The Exascale Revolution

By Tiffany Trader

October 23, 2014

The post-petascale era is marked by systems with far greater parallelism and architectural complexity. Failing some game-changing innovation, crossing the next 1000x performance barrier will be more challenging than previous efforts. At the 2014 Argonne National Laboratory Training Program on Extreme Scale Computing (ATPESC), held in August, Professor Pete Beckman delivered a talk on “Exascale Architecture Trends” and their impact on the programming and executing of computational science and engineering applications.

It’s a unique point in time, says Beckman, director of the Exascale Technology and Computing Institute. While we can’t completely future-proof code, there are trends that will impact programming best practices.

When it comes to the current state of HPC, Beckman shares a chart from Peter Kogge of Notre Dame detailing three major trends, which can be traced back to 2004.

  • The power ceiling.
  • The clock ceiling.
  • Sockets and cores are growing.

As Kogge illustrates, there was a fundamental shift in 2004. Computing reached a point where the chips can’t get any hotter, the clock stopped scaling and there was no more free performance lunch.

“Now the parallelism in your application is increasing dramatically with every generation,” says Beckman. “We have this problem, we can’t make things take much more power per package, we’ve hit the clock ceiling, we’re now scaling by adding parallelism, and there’s a power problem at the heart of this, which translates into all sorts of other problems, with memory and so on.”

To illustrate the power issue, Beckman compares the IBM Blue Gene/Q system to its predecessor the Blue Gene/P system. Blue Gene/Q is about 20 times faster and uses four times more power, making it five times more power efficient. This seems like very good progress. But with further extrapolation, it is evident that an exascale system built on this 5x trajectory would consume 64MW of power. To add further perspective, consider a MW costs about $1 million a year in electricity, putting this cost at $64 million a year.

Power Problem Blue Gene Beckman

Beckman emphasizes the international nature of this problem. Japan, for example, has set an ambitious target of 2020 for its exascale computing strategy, which is being led by RIKEN Advanced Institute for Computational Science. Although they have not locked down all the necessary funding, they estimate a project cost of nearly $1.3 billion.

Regions around the world have come to the conclusion that the exascale finish line is unlike previous 1000x efforts and will require international collaboration. Beckman points to TOP500 list stagnation has indicative of the difficulty of this challenge. In light of this, Japan and the US have signed a formal agreement to collaborate on HPC system software development. The agreement signed at ISC includes significant collaboration.

Europe is likewise pursuing similar agreements with the US and Japan. As part of its Horizon 2020 program, Europe is planning to invest 700 million Euros between 2014 and 2020 to fund next-generation systems. Part of this initiative includes a special interest in establishing a Euro-centric HPC vendor base.

No discussion of the global exascale race would be complete without mentioning China, which has operated the fastest computer in the world, Tianhe-2, for the last three iterations of the TOP500 list. Tianhe-2 is energy-efficient for its size with a power draw of 24MW power including cooling, however the expense has resulted in it’s not being turned on all the time.

Principally an Intel-powered system, Tianhe-2 also contains homegrown elements developed by China’s National University of Defense Technology (NUDT), including SPARC-derived CPUs, a high-speed interconnect, and its operating system, which is a Linux variant. China continues to invest heavily in HPC technology. Beckman says we can expect to see one of the next machine’s from China – likely in the top 10 – comprised entirely of native technology.

Can the exponential progress continue?

Looking at the classic History of Supercomputing chart, it looks like systems will continue to hit their performance marks if their massive power footprints are tolerable. At the device level, there is stress with regard to feature sizes nearing some fundamental limits. “Unless there is a revolution of some sort, we really can’t get off the curve that is heading towards a 64MW supercomputer,” says Beckman. “It’s about power, both in the number of chips and the total dissipation of each of chips.”

Beckman cites some of the forces of change with regard to software, including memory, threads, messaging, resilience and power. At the level of the programming model and the OS interface, Beckman suggests the need for coherence islands as well as persistence.

With increased parallelism, the notion that equal work is equal time is going away, and variability (noise, jitter) is the new norm. “The architecture will begin to show even more variability between components and your algorithms and your approaches, whether it’s tasks or threads, will address that in the future,” Beckman tells his audience, “and as we look toward exascale, the programmer who can master this feature well, will do well.”

Attracting and training the next generation of HPC users is a top priority for premier HPC centers like Argonne National Laboratory. One way that Argonne tackles this challenge is by holding an intensive summer school in extreme-scale computing. Tracing its summer program back to the 1980s, the presentations are worthwhile not just for the target audience – a select group of mainly PhD students and postdocs – but for anyone who is keenly interested in the state of HPC, where it’s come from and where it’s going.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This