The Exascale Revolution

By Tiffany Trader

October 23, 2014

The post-petascale era is marked by systems with far greater parallelism and architectural complexity. Failing some game-changing innovation, crossing the next 1000x performance barrier will be more challenging than previous efforts. At the 2014 Argonne National Laboratory Training Program on Extreme Scale Computing (ATPESC), held in August, Professor Pete Beckman delivered a talk on “Exascale Architecture Trends” and their impact on the programming and executing of computational science and engineering applications.

It’s a unique point in time, says Beckman, director of the Exascale Technology and Computing Institute. While we can’t completely future-proof code, there are trends that will impact programming best practices.

When it comes to the current state of HPC, Beckman shares a chart from Peter Kogge of Notre Dame detailing three major trends, which can be traced back to 2004.

  • The power ceiling.
  • The clock ceiling.
  • Sockets and cores are growing.

As Kogge illustrates, there was a fundamental shift in 2004. Computing reached a point where the chips can’t get any hotter, the clock stopped scaling and there was no more free performance lunch.

“Now the parallelism in your application is increasing dramatically with every generation,” says Beckman. “We have this problem, we can’t make things take much more power per package, we’ve hit the clock ceiling, we’re now scaling by adding parallelism, and there’s a power problem at the heart of this, which translates into all sorts of other problems, with memory and so on.”

To illustrate the power issue, Beckman compares the IBM Blue Gene/Q system to its predecessor the Blue Gene/P system. Blue Gene/Q is about 20 times faster and uses four times more power, making it five times more power efficient. This seems like very good progress. But with further extrapolation, it is evident that an exascale system built on this 5x trajectory would consume 64MW of power. To add further perspective, consider a MW costs about $1 million a year in electricity, putting this cost at $64 million a year.

Power Problem Blue Gene Beckman

Beckman emphasizes the international nature of this problem. Japan, for example, has set an ambitious target of 2020 for its exascale computing strategy, which is being led by RIKEN Advanced Institute for Computational Science. Although they have not locked down all the necessary funding, they estimate a project cost of nearly $1.3 billion.

Regions around the world have come to the conclusion that the exascale finish line is unlike previous 1000x efforts and will require international collaboration. Beckman points to TOP500 list stagnation has indicative of the difficulty of this challenge. In light of this, Japan and the US have signed a formal agreement to collaborate on HPC system software development. The agreement signed at ISC includes significant collaboration.

Europe is likewise pursuing similar agreements with the US and Japan. As part of its Horizon 2020 program, Europe is planning to invest 700 million Euros between 2014 and 2020 to fund next-generation systems. Part of this initiative includes a special interest in establishing a Euro-centric HPC vendor base.

No discussion of the global exascale race would be complete without mentioning China, which has operated the fastest computer in the world, Tianhe-2, for the last three iterations of the TOP500 list. Tianhe-2 is energy-efficient for its size with a power draw of 24MW power including cooling, however the expense has resulted in it’s not being turned on all the time.

Principally an Intel-powered system, Tianhe-2 also contains homegrown elements developed by China’s National University of Defense Technology (NUDT), including SPARC-derived CPUs, a high-speed interconnect, and its operating system, which is a Linux variant. China continues to invest heavily in HPC technology. Beckman says we can expect to see one of the next machine’s from China – likely in the top 10 – comprised entirely of native technology.

Can the exponential progress continue?

Looking at the classic History of Supercomputing chart, it looks like systems will continue to hit their performance marks if their massive power footprints are tolerable. At the device level, there is stress with regard to feature sizes nearing some fundamental limits. “Unless there is a revolution of some sort, we really can’t get off the curve that is heading towards a 64MW supercomputer,” says Beckman. “It’s about power, both in the number of chips and the total dissipation of each of chips.”

Beckman cites some of the forces of change with regard to software, including memory, threads, messaging, resilience and power. At the level of the programming model and the OS interface, Beckman suggests the need for coherence islands as well as persistence.

With increased parallelism, the notion that equal work is equal time is going away, and variability (noise, jitter) is the new norm. “The architecture will begin to show even more variability between components and your algorithms and your approaches, whether it’s tasks or threads, will address that in the future,” Beckman tells his audience, “and as we look toward exascale, the programmer who can master this feature well, will do well.”

Attracting and training the next generation of HPC users is a top priority for premier HPC centers like Argonne National Laboratory. One way that Argonne tackles this challenge is by holding an intensive summer school in extreme-scale computing. Tracing its summer program back to the 1980s, the presentations are worthwhile not just for the target audience – a select group of mainly PhD students and postdocs – but for anyone who is keenly interested in the state of HPC, where it’s come from and where it’s going.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire