CORAL Signals New Dawn for Exascale Ambitions

By Nicole Hemsoth

November 14, 2014

Just when it started to look as though the architectural course had been set for the next wave of large-scale supercomputers, today offered quite a shakeup to the standard.

And it’s not just the amount spent to turn a novel architecture into a pre-exascale reality, although to be fair, it’s rare indeed to see a lump $325 million deal from the Department of Energy to fund new systems with an extra $100 million added to support extreme scale technologies under the FastForward initiative.

Aside from the sheer investment figures, the fascinating part of what’s happening is architectural—and therefore, important in terms of what this means for how centers think about energy consumption, prioritization of extreme scale scientific and security challenges, and of perhaps to some degree, the slightly less dominant position of the U.S. in terms of its national supercomputing capability.

While many expected these first two of the new pre-exascale systems to come out of the CORAL collaboration between Oak Ridge, Lawrence Livermore, and Argonne national laboratories to follow the trends set by Titan and other accelerated Intel-powered x86 machines, those expectations were upended by IBM in today’s announcement about a new class of systems sporting GPUs via a close collaboration among OpenPower members IBM, NVIDIA and Mellanox.

Before we delve into an early overview of the systems, it’s worth noting that the very status of IBM’s role in the future of supercomputing had been called into question over the last year, making this a rather surprising announcement in its own right. From selling off their core HPC-oriented server business to Lenovo to quietly bringing the Blue Gene era to a close, it seemed that their interests were shifting toward a more general Power-based approach for all datacenters—not just HPC with its unique subsets of system choices.

To be fair though, this is still what they’re doing. The massive procurement is for systems that are not exactly distinct HPC offerings per se, but rather more advanced and forward-looking variants on the overall OpenPower push to upend Intel’s dominance. However, with the addition of key technologies from Mellanox and NVIDIA, specifically the latter’s NVLINK technology, the new generation, which we heard for the first time today is called “Power9” IBM has found a way to maintain an edge at the high end while refining the Power approach to the wider datacenter market as these technologies mature and are put to the test at scale….and massive scale, at that.

The result of all of this are two systems that will be installed in the 2017 time frame. Summit, which will be housed at Oak Ridge National Laboratory and will be dedicated to large-scale scientific endeavors ranging from climate modeling to other open science initiatives. The other, called Sierra, is set to be installed at Lawrence Livermore with emphasis on security and weapons stockpile management.

Both are GPU-accelerated systems that have fewer nodes for all the performance they’re able to pack in due to the collaboration between NVIDIA and its Volta architecture, which for those who follow these generations, is two away from where we are now with Pascal expected in 2016. The key here is the NVLink interconnect, which is set to push new limits in terms of making these the “data centric” supercomputers IBM is espousing as the next step beyond supercomputers which have traditionally been valued according only to their floating point capabilities.

We will be exploring the technology in a companion piece that will immediately follow this one and offer a deeper sense of the projected architecture from chip to interconnect. However, to kick off this series, we wanted to provide a touchstone for these first inklings at what exascale-class systems might look like in the U.S. in the years to come.

One thing is for sure, these are packing a lot of punch in a far lessened amount of space. The Summit system at Oak Ridge is expected to push the 150 to 300 peak petaflop barrier, but according to Jeff Nichols, one of the most remarkable aspects of the system is how they were able to work partners IBM, NVIDIA, and Mellanox to create an architecture that can be boiled down to a much smaller number of nodes for far higher performance and a much larger shared memory footprint.

At this stage, Summit will be 5x or more the performance of Titan at 1/5 the size—weighing in at just around 3400 nodes.

“This shared memory capability and lower node count is important to our developers going forward,” he said. “I can say as a computational chemist myself that developers love having fewer nodes to manage and more shared memory per node to work with.”

The “data-centric” approach that IBM has been wrapping around for this announcement in particular is another key feature of the Summit system said Nichols. In addition to having the 5x to 10x performance boost using accelerators, which are already in play at Oak Ridge National Lab on the Titan machine, the capabilities for managing vast amounts of complex simulation data is critical. “We can ingest more data, more varieties of data, and explore modeling and simulation data in new ways that we couldn’t do even with Titan,” he explained. “As we move toward exascale, and this is certainly an early step towards that, we do feel that we have a good path forward in terms of how we’ll develop and deploy future systems along this architectural path” with both computational and data centric needs in mind.

As NVIDIA’s Sumit Gupta told us today that each of these nodes is so powerful that four of them alone today would make the Top 500. “You probably need a couple of racks of servers to get into the Top 500 but GPU performance will advance so much that we’ll get that with just four nodes. The central reason why the largest supercomputers are using accelerators is that CPU alone is too much power. A 150 petaflop system today would be half the power of Vegas—and that isn’t going to improve much.”

Gupta added that NVLink, which will explore in depth in a follow-up technical piece, is central because the CORAL collaborators wanted a fast processor but required a data movement paradigm that would allow data to be handled quickly without extra hops. The traditional CPU and GPU connected traditionally over PCIe has been great for classical high performance computing, he noted, but with high throughput computing users at that scale need the processors to be able to move data efficiently from point to point.

These features are key for the weapons stockpile program that is central to national security where the Sierra system will offer a massive increase in performance and efficiency at Lawrence Livermore. This machine is expected to offer in excess of 100 peak petaflop performance.

As LLNL’s Mike McCoy said today, “Simulation is critical to our stockpile program—it’s critical for us to make sure we never have to return to nuclear testing. But our 3D weapons simulations codes involve 3D applications, multiple physics packages, and our major codes easily run over a million lines not to mention the databases they employ. At the end of the day, key national security decisions are made based on these calculations but the question is always how do we know these systems are going to do the work we need?

In answering his own question he explained the way value of the partnership of OpenPower members. “This is not an off the shelf approach—the partnerships are strong and we share the risk in development and deliver platforms that can rapidly come into production and serve our needs. This effort is achieved through a systems integration approach and there will be tight integration between the vendors and code development teams which is called codesign—this has been interestingly enough applied into the past and led to advances like the Blue Gene L that led to advances and performed. This partnership represents a huge opportunity to deliver these and future first gen exascale systems.

We’ve displaced an Intel-based system at ORNL and we haven’t been there for a number of years. It’s a nice achievement for us,” said IBM’s Dave Turek in a conversation today. But the real value in this news is how it could represent the first seismic shift away from the FLOPS-centric approach to large-scale systems to one that takes the problems of data to heart at the core. “We are aided here not because of anything other than what we’re seeing in terms of the evolution of the marketplace through direct measurement how necessary it is to simultaneously deal with analytics in concert with modeling and simulation. If you look at an example like seismic processing and you go back ten years, the bulk of the time would have been dedicated to the algorithm and making it faster but what’s transformed the conversation is the radical influx of data. Now when you inspect the infrastructure that’s being deployed in examples like this, there’s a tremendous amount of mundane data sorting and managing that’s taking up the compute.

Just as efforts like this have bolstered IBM’s supercomputing products overtime, this new collaboration represents a shift for the company. IBM has in fact established an entirely new HPC roadmap—all around the concept of data centric computing. With these systems, the balance of performance, data movement, memory, and overall footprint are balanced with the needs of the new generations of highly scalable codes under development now with assistance from NVIDIA and IBM.

Follow up with us during your SC travels over the weekend and on Monday for more detail about the architectural features we’ve been able to tease out of a few conversations with IBM, NVIDIA, Mellanox and others.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Li Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, superco Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This