The Countdown to the Next Gordon Bell Prize

By Tiffany Trader

November 17, 2014

With so much on the menu at SC with its exceptional program of technical papers, tutorials, research posters, and Birds-of-a-Feather (BOF) sessions, it’s difficult to choose the best part, but it’s safe to say that the Gordon Bell Prize is not just a highlight of SC, it’s one of the highest honors in HPC. Every year since 1987, an uber-talented group of finalists raises the bar on parallel computing by applying HPC to range of important science, engineering, and large-scale data analytics problems. Winners must demonstrate an outstanding achievement in one of three areas: peak performance, scalability and time-to-solution, or a special achievement. They are also asked to justify their entries with regard to their real-world benefit as well as their contribution to the broader HPC community.

The competition is funded by its namesake Gordon Bell, a pioneer in computer architecture, parallel processing and high performance computing, and this year five teams are contending for the coveted prize. In addition to the first-place $10,000 cash award, one runner-up will be selected for Honorable Mention. The Association for Computing Machinery’s (ACM) awards committee will announce the results at the 26th annual Supercomputing Conference (SC) awards ceremony less than a week away in New Orleans.

As a prelude to this well-attended session, here is an overview of the five accomplished teams, who are doing their part to advance parallel computing through new or specialized architectures, advances in algorithms and applications, and other optimizations that exploit the potential of large-scale systems.

The five papers/teams are:

  • “Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers,” an international research project co-led by Michael Bader (Technische Universität München, Germany), Christian Pelties (Ludwig-Maximilians-Universität, Germany) and Alexander Heinecke (Intel, United States).
  • “Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x30 K time-step unstructured FE non-linear seismic wave simulation,” from a Japanese research team, led by University of Tokyo’s Tsuyoshi Ichimura.
  • “Real-time Scalable Cortical Computing at 46 Giga-Synaptic OPS/Watt with ~100× Speedup in Time-to-Solution and ~100,000× Reduction in Energy-to-Solution,” with research led by Dharmendra S. Modha, IBM Fellow and IBM Chief Scientist, Brain-inspired Computing, and additional team members from IBM and Cornell University.
  • “Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer,” with lead researcher David E. Shaw, of DE Shaw Research, and team.
  • “24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way Galaxy with 18600 GPUs,” with research led by Simon Portegies Zwart and Jeroen Bédorf of the Netherland’s Leiden Observatory and team from SURFsara Amsterdam, the National Astronomical Observatory of Japan, RIKEN AICS, and the University of Tsukuba (Japan).

Each of these teams will be presenting their paper talks next week on Tuesday and Wednesday, in advance of the award announcement on Thursday.
The authors of “Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers” report achieving unprecedented earth model complexity on an Intel Xeon Phi platform (China’s Tianhe-2 supercomputer). They carried out architecture-aware optimizations to the SeisSol code that deliver up to 50 percent of peak performance. While SeisSol delivers near-optimal weak scaling, reaching 8.6 DP-PFLOPS on 8,192 nodes of the Tianhe-2 supercomputer, the team’s performance model projects reaching 18-20 DP-PFLOPS on the full Tianhe-2 machine. They anticipate this having real-world benefits for modern civil engineering.

The next entry is notable for its humanitarian bent. “Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x30 K time-step unstructured FE non-linear seismic wave simulation,” is on track to supporting earthquake response efforts. Intending to boost the reliability of urban earthquake response analyses, the team developed a hybrid seismic wave amplification simulation code, GAMERA. This unstructured 3-D finite-element-based MPI-OpenMP code was deployed on Japan’s K computer, where it was able to achieve a size-up efficiency of 87.1 percent using the entire machine. They also applied GAMERA to a physics-based urban earthquake response analysis for Tokyo. The team acknowledges this is still a very compute-intensive problem, but they say such analyses can improve the quality of disaster estimations.

For “Real-time Scalable Cortical Computing at 46 Giga-Synaptic OPS/Watt with ~100× Speedup in Time-to-Solution and ~100,000× Reduction in Energy-to-Solution,” IBM and Cornell University researchers united to develop a parallel, event-driven kernel for neurosynaptic computation, called TrueNorth. The brain-inspired neurosynaptic processor emphasizes efficiency of computation, memory, and communication. Its backers are targeting TrueNorth for a wide range of cognitive applications. They’ve already used a co-designed silicon expression of the kernel to run computer vision applications and complex recurrent neural network simulations.

The large D.E. Shaw Research team behind “Anton 2: Raising the Bar for Performance and Programmability in a Special-Purpose Molecular Dynamics Supercomputer” report that the second-generation Anton 2 excels at performance, programmability, and capacity compared to its predecessor, Anton 1. Anton 2 is up to ten times faster than Anton 1 with the same number of nodes, and operates 180 times faster than any general-purpose hardware platform, according to the developers. The focus of the upgrade was enabling fine-grained event-driven operation, said to improve performance by increasing the overlap of computation with communication.

Last, but not least, the final paper, “24.77 Pflops on a Gravitational Tree-Code to Simulate the Milky Way Galaxy with 18600 GPUs,” shows the long-term evolution of the Milky Way Galaxy using 1,000 times more particles. Simulations were performed on two leadership-class machines, the Swiss Piz Daint supercomputer and the US ORNL Titan, using the N-body gravitational tree-code Bonsai. On Piz Daint, the 51 billion particle simulation achieved parallel efficiency of Bonsai above 95 percent, but the highest performance was achieved on Titan’s GPUs with a 242 billion particle Milky Way model. The Titan demo, which harnessed 18,600 GPUs, reached a sustained GPU performance of 33.49 petaflops and application performance of 24.77 petaflops.

Given the breadth and depth of these projects it is clear that the next winner of the Gordon Bell Prize next will join an elite list of past prize winners. Last year’s award went to the team responsible for “11 PFLOP/s Simulations of Cloud Cavitation Collapse,” by Diego Rossinelli, Babak Hejazialhosseini, Panagiotis Hadjidoukas and Petros Koumoutsakos, all of ETH Zurich; Costas Bekas and Alessandro Curioni of IBM Zurich Research Laboratory; Adam Bertsch and Scott Futral of Lawrence Livermore National Laboratory; and Steffen Schmidt and Nikolaus Adams of Technical University Munich.

In what IBM termed the “largest simulation ever in fluid dynamics,” the high throughput simulations of cloud cavitation collapse on 1.6 million cores of Sequoia reached 55 percent of its peak performance, corresponding to 11 petaflops. (This later rose to 14.4 petaflops sustained performance.) According to the authors, “the software successfully addresses the challenges that hinder the effective solution of complex flows on contemporary supercomputers, such as limited memory bandwidth, I/O bandwidth and storage capacity.” By boosting the quantitative prediction of cavitation, the breakthrough fluid dynamics simulations can help improve the design of high pressure fuel injectors and propellers and boost the performance of water purification systems and kidney lithotripsy. There is also an emerging therapeutic modality for cancer treatment. The paper is published in the Proceedings of SC’13.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This