NextScale Nodes Crest 1 Teraflops, Await Knights Landing

By Timothy Prickett Morgan

November 19, 2014

When the dust settles after its acquisition of the System x business from IBM, Lenovo Group will probably end up with the second largest HPC systems business in the world, behind Hewlett-Packard and eager to close that gap just as it has in the PC market. Lenovo came out swinging at the SC14 supercomputing conference in New Orleans this week with a new water-cooled NextScale modular system sporting over-clocked “Haswell” Xeon E5-2560 v3 processors and positioning this machine to accept Intel’s “Knights Landing” Xeon Phi processors when they ship in the second half of next year.

Lenovo is also starting up an HPC innovation center in Stuttgart, Germany, to leverage the expertise in key supercomputing centers in Europe to drive its roadmap going forward.

Before Lenovo acquired the System x division, IBM was working on a water-cooled variant of the NextScale modular system that would allow for dense packaging of compute and memory and also allow for warm water cooling of the system. Energy efficiency is a particular need for supercomputing centers, and in Europe, where electricity is more expensive and so is real estate (speaking very generally), wasting energy and space is less of an option. The NextScale system with water-cooled technology (it is literally called WCT by Lenovo) is the culmination of that engineering effort.

The NextScale systems were launched in September 2013 and pack a dozen single-width server nodes in a 6U enclosure. Unlike blade servers, the NextScale machines do not include all of the bells and whistles and redundant features that enterprise customers expect. With HPC and hyperscale customers alike, customers do not want any unnecessary feature in the box, which costs money and adds complexity to the system and therefore increases the odds that the system will break. The water-cooled NextScale machine is based on the single-wide nodes, and as Scott Tease, executive director of high performance computing at Lenovo explains to HPCwire, they include a dripless quick-connect system that runs warm water through water blocks to cool both the Xeon processors and their main memory.

lenovo-nextscale-wct

IBM has been putting water blocks on processors and main memory for years, so this is nothing new. But the way that the memory is cooled a bit different from the way IBM had done it. The main memory modules in the system are spaced apart a little and a water pipe is run between them. A heat-conducting piece of metal is pushed between a pair of memory modules to suck the heat out and transfer to the water pipe. A plastic cover is placed over the memory stick pair to ensure that no air gets in to absorb the heat. While the picture above shows a bezel with holes in it in the front of the server, in the production NextScale WCT systems this front is blocked off to prevent air from coming into the system; there is a set of baffles in the back of the server that do the same as they wrap around the water intake and output pipes.

By removing the fans and water cooling the processors and main memory in the two-socket NextScale node, Lenovo has a bit of extra headroom to boost the performance of the system. And so Lenovo has done the cool thing all the server kiddies are doing these days, and that is go to Intel to get a custom variant of the new Haswell Xeon E5 processor, the family of which was announced in early September. Lenovo has a version of the chip called the E5-2698A v3, which is a 16-core chip that runs at 2.8 GHz and that can have a sustained Turbo Boost speed of 3.2 GHz. This overclocking is made possible, Tease explains to HPCwire, because the efficiency of the water-cooling leaves about 6 percent thermal headroom over air-cooled versions of the chip that run at a lower 2.3 GHz clock speed normally. After the removal of fans (which consume power) and water-blocking on the memory, the overall reduction in system power is with the NextScale WCT is even higher than 6 percent, and with the water-blocking most datacenters using this system in most regions of the world can be cooled without the need of water chillers. Demonstrating the exponential relationship between clock speed and heat, cutting the thermals on the chip by 6 percent allows a 500 MHz increase in core clock speed, with another 400 MHz on top of that with Turbo Boost pushed up and held steady.

The NextScale WCT node has eight memory slots per socket, which is more than enough for most HPC applications. With Turbo Boost jacked up on a sustained basis, the NextScale WCT node with two of the Xeon E5-2698A v3 processors has a peak theoretical performance of 1.083 teraflops doing double-precision floating point math, which is about the same performance as Intel’s current “Knights Corner” Xeon Phi coprocessor card. That works out to about 2.45 gigaflops per watt, says Tease, which is on-par with the energy efficiency of many hybrid CPU-accelerator systems. That works out to 181.9 teraflops in a standard 42U rack.

Add up the savings that come from outside air cooling, and the NextScale WCT setup can cut the energy bill by as much as 40 percent, says Tease. That means either lowering the electric bill or being able to allocate that much more electricity to a more powerful system in the same energy budget. The NextScale WCT accepts water coming in at 45 degrees Celsius, which is about 113 degrees Fahrenheit. Waste heat comes out of the rack through water that is around 55 degrees, which is about 131 degrees and plenty useful.

But Lenovo is not stopping there. The NextScale WCT will be equipped with Intel’s forthcoming “Knights Landing” Xeon Phi coprocessor, which will have a peak theoretical performance in excess of 3 teraflops per chip. Intel is making the Knights Landing chip available in its own socket, and Lenovo plans to put two of them in the NextScale WCT nodes, that will deliver at least 500 teraflops per rack. That means Lenovo could cram a petaflops of performance in two server racks. Tease was quick to point out that the “Roadrunner” system built by IBM for Los Alamos National Laboratory in New Mexico for around $100 million was the first system to break the petaflops barrier and needed 296 racks and 3 megawatts of power to do so.

We have come a long way in terms of compressing this level of performance into smaller spaces and power envelopes, and next year will be a big year for hybrid computing to push the barriers even further.

Lenovo will be installing a NextScale WCT system at the Leibniz-Rechenzentrum in Munich, Germany, and it will be Phase 2 of the SuperMUC system.

lenovo-innovation-centerSeparately, Lenovo will be working with LRZ and a number of other key players to start an innovation center in Stuttgart, Germany. It will be installing an air-cooled NextScale cluster with 5,000 cores to start. The system will use 100 Gb/sec EDR InfiniBand networks from Mellanox Technologies to hook the nodes together, and it will eventually be expanded with the water-cooling options next year. This air-cooled system will be the focal point of HPC research in Europe for Lenovo, and the system will be up and running by January with the water-cooled upgrade and the addition of Xeon Phi coprocessors coming later in 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC 2019 Student Cluster Competition: Meet the Teams!

June 25, 2019

Finally! The videos have been rendered, the statistics compiled, and the story lines set. It’s time to share with you the incredible event that was the ISC 2019 Student Cluster Competition. So what’s a Student Clu Read more…

By Dan Olds

What’s New in HPC Research: Rock Art, Protein Design, Genome Assembly & More

June 25, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Azure Benchmarks HC-series Across 20,000 cores for HPC

June 25, 2019

Cloud provider Microsoft Azure’s push into HPC continues to gain momentum. In a blog last week, Evan Burness, principal program manager, Azure HPC, announced HC-series Virtual Machine are now available in West US 2 and Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Rediscovering the Value of the Past

Some people would like to forget their past, perhaps for good reasons. But for business or research organizations, preserving institutional memory can be the key to thriving in the future. Read more…

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benchmark, which has been anticipated, covers models applicable Read more…

By John Russell

ISC 2019 Student Cluster Competition: Meet the Teams!

June 25, 2019

Finally! The videos have been rendered, the statistics compiled, and the story lines set. It’s time to share with you the incredible event that was the ISC 20 Read more…

By Dan Olds

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benc Read more…

By John Russell

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

IBM Claims No. 1 Commercial Supercomputer with Total Oil & Gas System 

June 20, 2019

IBM can now boast not only the two most powerful supercomputers in the world, it also has claimed the top spot for a supercomputer used in a commercial setting. Read more…

By Staff Report

HPC on Pace for 5-Year 6.8% CAGR; Guess Which Hyperscaler Spent $10B on IT Last Year?

June 20, 2019

In the neck-and-neck horse race for HPC server market share, HPE has hung on to a slim, shrinking lead over Dell EMC – but if server and storage market shares Read more…

By Doug Black

ISC 2019 Research Paper Award Winners Announced

June 19, 2019

At the 2019 International Supercomputing Conference (ISC) in Frankfurt this week, the ISC committee awarded the event's top prizes for outstanding research pape Read more…

By Oliver Peckham

ISC Keynote: The Algorithms of Life – Scientific Computing for Systems Biology

June 19, 2019

Systems biology has existed loosely under many definitions for a couple of decades. It’s the notion of describing living systems using first-principle physics Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This