How the US Could Achieve Superconducting Supercomputing in Five Years

By Tiffany Trader

December 9, 2014

The Intelligence Advanced Research Projects Activity (IARPA) has officially commenced a multi-year research effort to develop a superconducting computer as a long-term solution to the power, cooling and space constraints that afflict modern high-performance computing. First revealed in February 2013, when the agency put out a call for proposals, the Cryogenic Computer Complexity (C3) program aims to pave the way for a new generation of superconducting supercomputers that are far more energy efficient than machines based on complementary metal oxide semiconductor (CMOS) technology.

Studies indicate the technology, which uses low temperatures in the 4-10 kelvin range to enable information to be transmitted with minimal energy loss, could yield one-petaflop systems that use just 25 kW and 100 petaflop systems that operate at 200 kW, including the cryogenic cooler. Compare this to the current greenest system, the L-CSC supercomputer from the GSI Helmholtz Center, which achieved 5.27 gigaflops-per-watt on the most-recent Green500 list. If scaled linearly to an exaflop supercomputing system, it would consume about 190 megawatts (MW), still quite a bit short of DARPA targets, which range from 20MW to 67MW.IARPA C3 program performance projections

The C3 project, which recently awarded an unspecified amount of funding to vendors IBM, Raytheon-BBN and Northrop Grumman Corporation, will focus on developing and integrating superconducting logic with new kinds of cryogenic memory as the basis for a small-scale working model of a superconducting computer. Superconducting circuit fabrication will be provided by MIT Lincoln Laboratory and independent test and evaluation will be carried out by NIST, Boulder.

Funding high-risk/high-payoff research in support of national intelligence is IARPA’s speciality, and superconducting computing is seen as a serious post-silicon contender for HPC, according to C3 Program Manager Dr. Marc Manheimer, who was interviewed for this piece. A long-time laboratory physicist with expertise in superconducting and in cryogenic magnetic phenomena, Dr. Manheimer provided additional details about the state of the technology and the scope of the program.

HPCwire: You’ve written about the promise of superconducting and cryogenic technologies to address the space and energy challenges of traditional silicon-based supercomputing. How tractable a problem is superconducting supercomputing?

Dr. Manheimer: IARPA only takes on the hardest problems, so it’s a serious technical challenge, but we think we have a path forward to solve all of the challenges associated with superconducting supercomputing. In particular, the challenge that I see as the hardest is to develop high-density, high-efficiency, low-latency, cryogenic memory.

HPCwire: More so than the logic?

Dr. Manheimer: The logic has been around in primitive forms for about 25-30 years, and a number of primitive circuits have been fabricated and tested, so we think we can move forward with the logic in a pretty straight-forward manner. We’ve developed a fabrication facility at the Lincoln Laboratory, and we’re upgrading that so that fab can produce circuits at the level that we need to prove out this technology. On the other hand, these cryogenic memory ideas – the other half of the program – are very new, and are for the most part untested, and we will have to go through developing the basic memory cells and put them into an array and drive them and control them in a pretty short time frame as compared with typical technology development.

HPCwire: The release put out by IARPA mentions the program would be carried out in two stages: components development for the memory and logic subsystems, then integration. Is the roadmap still following the three year plus two year split outlined last year?

Dr. Manheimer: Yes, for the first three years, the logic people have to produce some key demonstration circuits and the memory people have to produce a small-scale but complete memory, including decoders and drivers, and we also need the performers to develop a plan for how they are going to integrate these. That’s the first stage. Then we’ll have another call for proposals for the second stage.

HPCwire: So the three vendors that were awarded funding, are these first-phase partners?

Dr. Manheimer: These are independent projects. Northrup Grumman has two projects that they’ve succeeded in getting funding for. One is a logic program and one is a memory program. The Raytheon Corporation is running a memory program, and the IBM Corporation is running a logic program. So there are two logic projects and two memory projects.

HPCwire: The release also mentioned standard benchmarking programs…can you tell me more about these?

Dr. Manheimer: We’re developing a prototype, a small-scale computer, and we’re going to have to figure out what applications it’s suitable for as we scale it up. We’re going to be talking to a variety of customers with a variety of application types and we’re going to have our customers develop programs that they think will be useful in telling them what the potential of superconducting supercomputing computing is to their applications.

HPCwire: How different of an ecosystem is this compared to traditional silicon-based CMOS?

Dr. Manheimer: What we’re planning to do is reuse programs so we can use standard software, but one of the things that is missing from our ecosystem that is readily available in the semiconducting system is the development software suite. Right now if you want to develop a superconducting logic circuit of any scale, you pretty much have to do it on your own. There is no Mentor Graphics program, for example, available for superconducting computing.

HPCwire: Is IARPA thinking about specific applications yet and is this a general purpose system?

Dr. Manheimer: For now, we’re thinking general-purpose computing and we’ll see what develops in the next few years.

HPCwire: Do you think superconducting logic will be the main successor to silicon-based CMOS or is it more likely that we will have multiple computing device-level technologies that will evolve to fill this gap?

Dr. Manheimer: For high-performance computing, I think superconducting supercomputing has a high probability of being the winner. For smaller scale applications, I think CMOS will be perfectly fine for providing general-purpose computing for almost everyone. Clearly, superconducting computing won’t be useful for any portable format. Everyone will be carrying around his or her own cryogenic cooler…no, that’s not going to happen, so CMOS will be around for a long time.

HPCwire: Speaking of cryo-coolers, how much space do they take up?

Dr. Manheimer: Not much, I did a comparison between Titan at Oak Ridge and a projection of our superconducting technology, and we think that including the cryo-cooler, our supercomputer will take up about one-twentieth of the floor space, and that doesn’t include Titan’s cooling system.

HPCwire: Moving over to performance, what kind of performance goals have you set for the project and in what kind of timeframe? Is it possible to get to exascale and beyond with this technology?

Dr. Manheimer: We’ve only set goals for the C3 program, and we hope to be able to judge from the C3 program results how scalable the technology is. But we have very specific energy goals in mind for C3 and throughput goals, which are hosted on the website [and depicted below]. There are two things that we have to learn from C3. The first is whether you can actually build a supercomputer based on this technology if you really wanted to, and second do you really want to? Is it going to be prohibitively expensive and is the amount of technology required going to be too high with just no clear path forward? So those are questions that we have to seriously address at the end of C3.

IARPA C3 program diagram

HPCwire: Any estimate as to how much it will cost to build the world’s first superconducting supercomputer?

Dr. Manheimer: Not really, but if you look at conventional CMOS computers, these big supercomputers take several hundred million dollars.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This