How the US Could Achieve Superconducting Supercomputing in Five Years

By Tiffany Trader

December 9, 2014

The Intelligence Advanced Research Projects Activity (IARPA) has officially commenced a multi-year research effort to develop a superconducting computer as a long-term solution to the power, cooling and space constraints that afflict modern high-performance computing. First revealed in February 2013, when the agency put out a call for proposals, the Cryogenic Computer Complexity (C3) program aims to pave the way for a new generation of superconducting supercomputers that are far more energy efficient than machines based on complementary metal oxide semiconductor (CMOS) technology.

Studies indicate the technology, which uses low temperatures in the 4-10 kelvin range to enable information to be transmitted with minimal energy loss, could yield one-petaflop systems that use just 25 kW and 100 petaflop systems that operate at 200 kW, including the cryogenic cooler. Compare this to the current greenest system, the L-CSC supercomputer from the GSI Helmholtz Center, which achieved 5.27 gigaflops-per-watt on the most-recent Green500 list. If scaled linearly to an exaflop supercomputing system, it would consume about 190 megawatts (MW), still quite a bit short of DARPA targets, which range from 20MW to 67MW.IARPA C3 program performance projections

The C3 project, which recently awarded an unspecified amount of funding to vendors IBM, Raytheon-BBN and Northrop Grumman Corporation, will focus on developing and integrating superconducting logic with new kinds of cryogenic memory as the basis for a small-scale working model of a superconducting computer. Superconducting circuit fabrication will be provided by MIT Lincoln Laboratory and independent test and evaluation will be carried out by NIST, Boulder.

Funding high-risk/high-payoff research in support of national intelligence is IARPA’s speciality, and superconducting computing is seen as a serious post-silicon contender for HPC, according to C3 Program Manager Dr. Marc Manheimer, who was interviewed for this piece. A long-time laboratory physicist with expertise in superconducting and in cryogenic magnetic phenomena, Dr. Manheimer provided additional details about the state of the technology and the scope of the program.

HPCwire: You’ve written about the promise of superconducting and cryogenic technologies to address the space and energy challenges of traditional silicon-based supercomputing. How tractable a problem is superconducting supercomputing?

Dr. Manheimer: IARPA only takes on the hardest problems, so it’s a serious technical challenge, but we think we have a path forward to solve all of the challenges associated with superconducting supercomputing. In particular, the challenge that I see as the hardest is to develop high-density, high-efficiency, low-latency, cryogenic memory.

HPCwire: More so than the logic?

Dr. Manheimer: The logic has been around in primitive forms for about 25-30 years, and a number of primitive circuits have been fabricated and tested, so we think we can move forward with the logic in a pretty straight-forward manner. We’ve developed a fabrication facility at the Lincoln Laboratory, and we’re upgrading that so that fab can produce circuits at the level that we need to prove out this technology. On the other hand, these cryogenic memory ideas – the other half of the program – are very new, and are for the most part untested, and we will have to go through developing the basic memory cells and put them into an array and drive them and control them in a pretty short time frame as compared with typical technology development.

HPCwire: The release put out by IARPA mentions the program would be carried out in two stages: components development for the memory and logic subsystems, then integration. Is the roadmap still following the three year plus two year split outlined last year?

Dr. Manheimer: Yes, for the first three years, the logic people have to produce some key demonstration circuits and the memory people have to produce a small-scale but complete memory, including decoders and drivers, and we also need the performers to develop a plan for how they are going to integrate these. That’s the first stage. Then we’ll have another call for proposals for the second stage.

HPCwire: So the three vendors that were awarded funding, are these first-phase partners?

Dr. Manheimer: These are independent projects. Northrup Grumman has two projects that they’ve succeeded in getting funding for. One is a logic program and one is a memory program. The Raytheon Corporation is running a memory program, and the IBM Corporation is running a logic program. So there are two logic projects and two memory projects.

HPCwire: The release also mentioned standard benchmarking programs…can you tell me more about these?

Dr. Manheimer: We’re developing a prototype, a small-scale computer, and we’re going to have to figure out what applications it’s suitable for as we scale it up. We’re going to be talking to a variety of customers with a variety of application types and we’re going to have our customers develop programs that they think will be useful in telling them what the potential of superconducting supercomputing computing is to their applications.

HPCwire: How different of an ecosystem is this compared to traditional silicon-based CMOS?

Dr. Manheimer: What we’re planning to do is reuse programs so we can use standard software, but one of the things that is missing from our ecosystem that is readily available in the semiconducting system is the development software suite. Right now if you want to develop a superconducting logic circuit of any scale, you pretty much have to do it on your own. There is no Mentor Graphics program, for example, available for superconducting computing.

HPCwire: Is IARPA thinking about specific applications yet and is this a general purpose system?

Dr. Manheimer: For now, we’re thinking general-purpose computing and we’ll see what develops in the next few years.

HPCwire: Do you think superconducting logic will be the main successor to silicon-based CMOS or is it more likely that we will have multiple computing device-level technologies that will evolve to fill this gap?

Dr. Manheimer: For high-performance computing, I think superconducting supercomputing has a high probability of being the winner. For smaller scale applications, I think CMOS will be perfectly fine for providing general-purpose computing for almost everyone. Clearly, superconducting computing won’t be useful for any portable format. Everyone will be carrying around his or her own cryogenic cooler…no, that’s not going to happen, so CMOS will be around for a long time.

HPCwire: Speaking of cryo-coolers, how much space do they take up?

Dr. Manheimer: Not much, I did a comparison between Titan at Oak Ridge and a projection of our superconducting technology, and we think that including the cryo-cooler, our supercomputer will take up about one-twentieth of the floor space, and that doesn’t include Titan’s cooling system.

HPCwire: Moving over to performance, what kind of performance goals have you set for the project and in what kind of timeframe? Is it possible to get to exascale and beyond with this technology?

Dr. Manheimer: We’ve only set goals for the C3 program, and we hope to be able to judge from the C3 program results how scalable the technology is. But we have very specific energy goals in mind for C3 and throughput goals, which are hosted on the website [and depicted below]. There are two things that we have to learn from C3. The first is whether you can actually build a supercomputer based on this technology if you really wanted to, and second do you really want to? Is it going to be prohibitively expensive and is the amount of technology required going to be too high with just no clear path forward? So those are questions that we have to seriously address at the end of C3.

IARPA C3 program diagram

HPCwire: Any estimate as to how much it will cost to build the world’s first superconducting supercomputer?

Dr. Manheimer: Not really, but if you look at conventional CMOS computers, these big supercomputers take several hundred million dollars.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire