SpaceX Leverages HPC to Reach Orbit

By George Leopold

January 2, 2015

The commercial revolution in spaceflight is predicated on bringing computing power and Web 2.0 practices to bear in the quest to reduce the cost of lofting payloads to space. All this must be accomplished while demonstrating safety and reliability for the day when commercial space companies begin carrying crews to Earth’s orbit and beyond.

Among the leaders in this endeavor is Space Exploration Technologies Inc., or SpaceX, the first commercial company to send an unmanned cargo ship to the International Space Station (it is also the only commercial company that can return an orbiting spacecraft and its cargo to Earth).

Much of SpaceX’s success hinges on its ability to leverage high-performance computing along with computer-aided engineering tools in the drive to reduce the cost of lifting a pound of payload to orbit. For the commercial space industry, the Holy Grail for launch cost is about $1,000 per pound to orbit. That goal remains elusive. Still, innovators like SpaceX are making headway by moving away from the traditional “arsenal model” of heavily subsidized NASA contractors to agile enterprises that know how to leverage new computing tools along with agile engineering practices.

The remaining question in the dangerous arena of spaceflight is whether computer simulations can replace the time-tested method of blowing up stuff to find out why it broke. Only then can spacecraft carry humans.

SpaceX founder Elon Musk has embraced the use of new computing tools to develop everything from reusable rockets to floating launch pads. All are designed with the single-minded goal of reducing the cost of commercial space operations while ensuring crew safety. The upstart space company has yet to fully demonstrate that capability, but it has plans in the works to carry crews to the space station later in the decade under a NASA contract awarded in 2014.

In a video tour of the SpaceX facility in Hawthorne, Calif., Musk noted: “Where ever possible we try to design a [rocket] part in 3-D, to manufacture it in 3-D and then to inspect it in 3-D, so we minimize the number of 2-D to 3-D conversions.”

The company also uses full “hardware in the loop” simulations of first and second stage engines for its workhorse Falcon 9 rocket. “From an avionics, electronics standpoint and from a steering standpoint, the flight computer and avionics think they are flying the vehicle to space,” Musk explained. “Then we verify that the computer has done all the things it’s supposed to do make the rocket get successfully to space.”

Standing in front of the SpaceX server room as the company was ramping up for flights to the space station, Musk is seen with about 500 processors used for applications like computational fluid dynamics, finite element analysis and storage for 3-D solid modeling. The server room has certainly grown as the company has begun launching payloads for several international customers. A launch failure can cost billions of dollars, making realistic launch simulations a must.

Those simulations are followed by “live-fire” engine testing a a SpaceX test facility in Texas before rockets and spacecraft are shipped to Cape Canaveral, Florida, or Vandenberg Air Force Base in California for launch.

Along with sheer computing power, another key tool is computational fluid dynamics used to design next-generation rockets and spacecraft. SpaceX has partnered with vendors like Ansys Inc. in an effort to harness computing power in the design and development process.

Commercial space competition is creating “substantial pressure to drive down the cost technology of putting a pound of [payload] into orbit and incredible pressure on cycle time development,” notes Rob Harwood, Ansys industry director for aerospace and defense. “We all know you don’t get a second chance in space, it has to work first time.”

Ansys is the primary computer-aided engineering tool used by SpaceX since the company needs to investigate multiple types of physics when designing rocket engines and spacecraft. For example, engineers need to understand thermal transients on its Dragon spacecraft that result in stresses on the cargo ship.

According to Andy Sadhwani, SpaceX senior propulsion analyst, Ansys is used to shorten the design analysis cycle, increasing the rate of “design evolution” while reducing test costs. The last area, testing, remains controversial within the space industry. Given that space is an unforgiving environment, some critics argue that stresses on spacecraft can’t be simulated. Rather, hardware needs to be pushed to breaking point to ensure that it won’t fail in space.

The SpaceX Merlin 1D engine is powered by kerosene and liquid oxygen. Ansys provides most of the engine analysis and “size” requirements for engine components. The tool is also used to gather “pre-test predictions” on engine strain and thermal behavior. That data is “pulled from our models and favorably anchored to our hot-fire testing in Texas,” said Bulent Altan, SpaceX avionics engineer and systems integrator.

Bulent Altan, SpaceX avionics engineer and systems integrator, sets up a simulated test firing of second stage rocket engine that will be sent to engineers planning an engine test firing in Texas.
Bulent Altan, SpaceX avionics engineer and systems integrator, sets up a simulated test firing of a second stage rocket engine that will be sent to engineers planning an engine test firing in Texas.

As SpaceX eyes manned flights, it is looking for ways to squeeze more thrust out its Merlin rocket engines. Designers were able to “leverage the link between [computer] models and test data to nail designs on the first or second try,” Sadhwani claimed.

Another issue for metal-bending aerospace companies is easing the inevitable backlog in the machine shop. The ability to use computational fluid dynamics and other simulations tool is being leveraged by SpaceX to reduce the number of test iterations. That in turn has shortened the design analysis cycle so the company can avoid logjams in the machine shop and remain on schedule for its next launch.

Musk’s efforts to transform the way aerospace companies operate have so far worked. What counts in the space business is actually doing what you said you were going to do, as in sending humans to the moon by the end of the 1960s. The big test for SpaceX and the rest commercial space industry will come when humans are strapped into the coaches of a commercially designed and built spacecraft and launched into orbit.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire