Argonne’s Paul Messina on Training for Extreme-Scale

By Tiffany Trader

March 12, 2015

Paul Messina, director of science for the Argonne Leadership Computing Facility (ALCF), discusses the primary objectives, curriculum and importance of the Argonne Training Program on Extreme-Scale Computing (ATPESC), now in its third year.

HPCwire: Can you give us an overview of the Argonne Training Program on Extreme-Scale Computing (ATPESC)?

Paul Messina: Absolutely, Tiffany. The ATPESC program provides those participating with intense hands-on training on the key skills, approaches and tools to design, implement, and execute computational science and engineering applications on current supercomputers and the HPC systems of the future.

We’ve found it to be the case that with the challenges posed by the architecture and software environments of today’s most powerful supercomputers, and even greater complexity coming in the future from next-generation and exascale systems, there is a great need for specialized, in-depth training for the computational scientists poised to facilitate breakthrough science and engineering using these HPC resources. So our program is very well-equipped to take on those challenges and address this training need, and is designed to fill the many gaps that exist in the training computational scientists typically receive through formal education or shorter courses.

During the two-weeks of the program there are many lectures and hands-on sessions. The participants have access to several of the world’s most powerful computers, and that is an important feature. Learning to carry out scientific computing on high-end systems requires hands-on use, just like one cannot learn how to ride a bicycle by reading a book about bicycle riding. The days are long: lectures start at 8:30 a.m. and computer exercises end around 9:30 p.m. Even during our nightly dinners there is a talk about some aspect of computing or innovative applications.

HPCwire: What inspired you to organize this program?

I observed that although computational approaches to tackling research problems has become increasingly common, university courses seldom cover many topics that have become extremely important, such as software engineering. Furthermore, supercomputer architectures feature hundreds of thousands of cores, multi-level memory hierarchies, and diverse networks connecting the nodes. Implementing applications on such systems involves dealing with issues that do not arise on the much smaller systems to which most people have access. For example, a straightforward implementation of a simple task such as input and output will be woefully slow and inefficient on today’s high-end systems.

There are workshops and short courses, typically 3-5 days, on individual topics, but few if any longer ones that expose the participants to most areas that come into play when one carries out computational science and engineering.

Therefore, I felt there was a gap in the training of most computational scientists early in their careers and I – in collaboration with many colleagues – decided to try to fill that gap.

HPCwire: What topics will the 2015 program cover and how has the curriculum evolved since it started in 2013?

Paul Messina: The core of the program will focus on programming methodologies that are effective across a variety of supercomputers and that are expected to be applicable to exascale systems. Multiple approaches will be covered, but the primary emphasis will be on unifying concepts and levels of abstraction that provide migration paths and performance portability among current and future architectures. Additional topics that we will cover include computer architectures, mathematical models and numerical algorithms, software engineering, approaches to building community codes for HPC systems, and methodologies/tools relevant for data-intensive (I dislike the big data label) applications.

The curriculum has been refined each year, not so much by introducing new topics as by emphasizing particular aspects or features. For example, we have always covered software engineering and approaches to building community codes, but in 2015 we will spend more time on performance portability across current architectures and to future generations of supercomputers. The computer architecture sessions now provide more information on the effects of hardware features on performance. Each year we also try to improve the exercises for hands-on sessions; they are an invaluable part of the training.

HPCwire: How do current trends in HPC – manycore processors, the parallelism mandate, architectural heterogeneity, etc. – affect your outreach and training efforts? Is HPC getting more difficult?

Paul Messina: Various forms of parallelism have been important for over three decades, but it is true that starting about 10 years ago, supercomputer architectures have become more complex and more difficult to use efficiently. In addition, because the top computers are much faster and have much more total memory than they have in the past, computational scientists are able to tackle more complex problems and they are more difficult to program. So, yes, I would say HPC is getting more difficult but on the plus side, in many research fields HPC enables advances that make the extra effort worthwhile.

HPCwire: Last year’s sessions were led by a roster of HPC luminaries, including Intel’s parallel programming guru James Reinders and TOP500 list cofounder Jack Dongarra. What can you tell HPCwire readers about the presenters for this year’s program?

Paul Messina: We are fortunate to be able to attract lecturers such as Reinders and Dongarra, both or whom will again participate, as well as many other leaders in the various fields that come into play in carrying out computational science and engineering. Almost all of last year’s instructors have already committed to ATPESC 2015. The 2014 schedule is on our website so one can get a good idea of the 2015 program, details of which will be posted in late March, at extremecomputingtraining.anl.gov.

Having such stellar lecturers not only provides excellent insights and knowledge to the participants, but also the opportunity to meet them, ask questions, and often examine a problem side by side.

HPCwire: Who will benefit most from this training and how does the application and selection process work?

Paul Messina: The doctoral students, postdocs, and computational scientists early in their careers who participated in the first two offerings all found the program to be very useful, and they comprise the bulk of the participants. A few participants each year were research scientists with as much as 20 years seniority at national or industrial research laboratories; they also learned many things they found useful for their own research interests.

The program is designed for researchers who plan to (or already have) careers that involve computational science and engineering research that requires high-end computing and who have already programmed (not merely used) a non-trivial application on a fairly large parallel computer. Applicants submit a one to two page statement of why they want to attend the program and a description of their computing experience, a curriculum vita, and one letter of recommendation from an advisor or supervisor.

The selection of participants is carried out by a committee of approximately eight people, and we look for strong evidence that the applicant has enough parallel programming expertise on fairly large systems. Otherwise, they will not benefit from the program, and would lack the grounding. Each year of the program so far we have found that many more applicants than we have room for are very well qualified, making our final selection process extremely challenging.

Instructions for applying to the program can be found at our website referenced earlier, and the deadline for applying is April 3, 2015. Also, there are no fees required for participation, and domestic airfare, meals, and lodging are all provided.

HPCwire: The Argonne Training Program on Extreme-Scale Computing is in its third year, but I understand that Argonne’s summer program can be traced back to the 1980s. What does this say about the spirit of outreach at Argonne and in the HPC community?

Paul Messina: That’s right, in the early days of commercial parallel computers, in the early 1980s, Argonne offered many short courses on parallel programming. We had acquired several parallel computers with different architectures to start doing research on parallel computing and many people became interested in learning to program them. Having real parallel machines was a novelty. Four of our scientists – Rusty Lusk and Ross Overbeek (both of whom are still at Argonne), Dan Sorensen (now at Rice University), and Jack Dongarra – started teaching courses on programming and on parallel algorithms and found themselves doing it over and over, there was such demand for them. A fair number of senior people in the worldwide computational community spent part of their summers at Argonne and were exposed to parallel computing for the first time.

Argonne has a culture of openness and collaboration with colleagues worldwide, so outreach comes naturally. I have worked at and visited other research labs and universities and I would say that the HPC community largely has the same spirit.

HPCwire: What advice would you give to someone who is considering a career in HPC?

My first advice would be to pursue it. It is a field with myriad opportunities, one can contribute to advances that benefit society, that enhance our knowledge of our universe, and that result in better products. My second piece of advice would be to learn as much math as possible and to deeply study computer architectures and software tools, so that you really understand how computers and software work. “No black boxes” would be one way of putting it. That is a mighty high goal and I realize few people can reach it, I certainly can’t, but it is the approach of trying to understand why a calculation behaves as it does that I would urge people to follow.

ATPESC 2015 will be held August 2 – 14. The application deadline is April 3, 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire