Argonne’s Paul Messina on Training for Extreme-Scale

By Tiffany Trader

March 12, 2015

Paul Messina, director of science for the Argonne Leadership Computing Facility (ALCF), discusses the primary objectives, curriculum and importance of the Argonne Training Program on Extreme-Scale Computing (ATPESC), now in its third year.

HPCwire: Can you give us an overview of the Argonne Training Program on Extreme-Scale Computing (ATPESC)?

Paul Messina: Absolutely, Tiffany. The ATPESC program provides those participating with intense hands-on training on the key skills, approaches and tools to design, implement, and execute computational science and engineering applications on current supercomputers and the HPC systems of the future.

We’ve found it to be the case that with the challenges posed by the architecture and software environments of today’s most powerful supercomputers, and even greater complexity coming in the future from next-generation and exascale systems, there is a great need for specialized, in-depth training for the computational scientists poised to facilitate breakthrough science and engineering using these HPC resources. So our program is very well-equipped to take on those challenges and address this training need, and is designed to fill the many gaps that exist in the training computational scientists typically receive through formal education or shorter courses.

During the two-weeks of the program there are many lectures and hands-on sessions. The participants have access to several of the world’s most powerful computers, and that is an important feature. Learning to carry out scientific computing on high-end systems requires hands-on use, just like one cannot learn how to ride a bicycle by reading a book about bicycle riding. The days are long: lectures start at 8:30 a.m. and computer exercises end around 9:30 p.m. Even during our nightly dinners there is a talk about some aspect of computing or innovative applications.

HPCwire: What inspired you to organize this program?

I observed that although computational approaches to tackling research problems has become increasingly common, university courses seldom cover many topics that have become extremely important, such as software engineering. Furthermore, supercomputer architectures feature hundreds of thousands of cores, multi-level memory hierarchies, and diverse networks connecting the nodes. Implementing applications on such systems involves dealing with issues that do not arise on the much smaller systems to which most people have access. For example, a straightforward implementation of a simple task such as input and output will be woefully slow and inefficient on today’s high-end systems.

There are workshops and short courses, typically 3-5 days, on individual topics, but few if any longer ones that expose the participants to most areas that come into play when one carries out computational science and engineering.

Therefore, I felt there was a gap in the training of most computational scientists early in their careers and I – in collaboration with many colleagues – decided to try to fill that gap.

HPCwire: What topics will the 2015 program cover and how has the curriculum evolved since it started in 2013?

Paul Messina: The core of the program will focus on programming methodologies that are effective across a variety of supercomputers and that are expected to be applicable to exascale systems. Multiple approaches will be covered, but the primary emphasis will be on unifying concepts and levels of abstraction that provide migration paths and performance portability among current and future architectures. Additional topics that we will cover include computer architectures, mathematical models and numerical algorithms, software engineering, approaches to building community codes for HPC systems, and methodologies/tools relevant for data-intensive (I dislike the big data label) applications.

The curriculum has been refined each year, not so much by introducing new topics as by emphasizing particular aspects or features. For example, we have always covered software engineering and approaches to building community codes, but in 2015 we will spend more time on performance portability across current architectures and to future generations of supercomputers. The computer architecture sessions now provide more information on the effects of hardware features on performance. Each year we also try to improve the exercises for hands-on sessions; they are an invaluable part of the training.

HPCwire: How do current trends in HPC – manycore processors, the parallelism mandate, architectural heterogeneity, etc. – affect your outreach and training efforts? Is HPC getting more difficult?

Paul Messina: Various forms of parallelism have been important for over three decades, but it is true that starting about 10 years ago, supercomputer architectures have become more complex and more difficult to use efficiently. In addition, because the top computers are much faster and have much more total memory than they have in the past, computational scientists are able to tackle more complex problems and they are more difficult to program. So, yes, I would say HPC is getting more difficult but on the plus side, in many research fields HPC enables advances that make the extra effort worthwhile.

HPCwire: Last year’s sessions were led by a roster of HPC luminaries, including Intel’s parallel programming guru James Reinders and TOP500 list cofounder Jack Dongarra. What can you tell HPCwire readers about the presenters for this year’s program?

Paul Messina: We are fortunate to be able to attract lecturers such as Reinders and Dongarra, both or whom will again participate, as well as many other leaders in the various fields that come into play in carrying out computational science and engineering. Almost all of last year’s instructors have already committed to ATPESC 2015. The 2014 schedule is on our website so one can get a good idea of the 2015 program, details of which will be posted in late March, at extremecomputingtraining.anl.gov.

Having such stellar lecturers not only provides excellent insights and knowledge to the participants, but also the opportunity to meet them, ask questions, and often examine a problem side by side.

HPCwire: Who will benefit most from this training and how does the application and selection process work?

Paul Messina: The doctoral students, postdocs, and computational scientists early in their careers who participated in the first two offerings all found the program to be very useful, and they comprise the bulk of the participants. A few participants each year were research scientists with as much as 20 years seniority at national or industrial research laboratories; they also learned many things they found useful for their own research interests.

The program is designed for researchers who plan to (or already have) careers that involve computational science and engineering research that requires high-end computing and who have already programmed (not merely used) a non-trivial application on a fairly large parallel computer. Applicants submit a one to two page statement of why they want to attend the program and a description of their computing experience, a curriculum vita, and one letter of recommendation from an advisor or supervisor.

The selection of participants is carried out by a committee of approximately eight people, and we look for strong evidence that the applicant has enough parallel programming expertise on fairly large systems. Otherwise, they will not benefit from the program, and would lack the grounding. Each year of the program so far we have found that many more applicants than we have room for are very well qualified, making our final selection process extremely challenging.

Instructions for applying to the program can be found at our website referenced earlier, and the deadline for applying is April 3, 2015. Also, there are no fees required for participation, and domestic airfare, meals, and lodging are all provided.

HPCwire: The Argonne Training Program on Extreme-Scale Computing is in its third year, but I understand that Argonne’s summer program can be traced back to the 1980s. What does this say about the spirit of outreach at Argonne and in the HPC community?

Paul Messina: That’s right, in the early days of commercial parallel computers, in the early 1980s, Argonne offered many short courses on parallel programming. We had acquired several parallel computers with different architectures to start doing research on parallel computing and many people became interested in learning to program them. Having real parallel machines was a novelty. Four of our scientists – Rusty Lusk and Ross Overbeek (both of whom are still at Argonne), Dan Sorensen (now at Rice University), and Jack Dongarra – started teaching courses on programming and on parallel algorithms and found themselves doing it over and over, there was such demand for them. A fair number of senior people in the worldwide computational community spent part of their summers at Argonne and were exposed to parallel computing for the first time.

Argonne has a culture of openness and collaboration with colleagues worldwide, so outreach comes naturally. I have worked at and visited other research labs and universities and I would say that the HPC community largely has the same spirit.

HPCwire: What advice would you give to someone who is considering a career in HPC?

My first advice would be to pursue it. It is a field with myriad opportunities, one can contribute to advances that benefit society, that enhance our knowledge of our universe, and that result in better products. My second piece of advice would be to learn as much math as possible and to deeply study computer architectures and software tools, so that you really understand how computers and software work. “No black boxes” would be one way of putting it. That is a mighty high goal and I realize few people can reach it, I certainly can’t, but it is the approach of trying to understand why a calculation behaves as it does that I would urge people to follow.

ATPESC 2015 will be held August 2 – 14. The application deadline is April 3, 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This