Last But Not Least: Argonne’s $200 Million Supercomputing Award

By Tiffany Trader

April 9, 2015

A supercomputer named Aurora is on track to become the fastest system in the United States and possibly the world. Just a few hours ago, DOE Undersecretary Franklin “Lynn” Orr, announced that Intel Corp. and Cray Inc. had been selected to supply Argonne National Laboratory with a 180 petaflops system, Aurora, and a secondary system of about 8 petaflops, called Theta, marking the final installment in the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative.

“Aurora is expected to be 18x more powerful than Argonne’s current Mira system, but it will only use 2.7 times as much energy,” said Undersecretary Orr, speaking from the offices of innovative startup space, 1871 Chicago, not far from Argonne National Lab where the new systems will be located. This kind of energy efficiency is crucial for deploying the coming generation of exascale-class supercomputers, he continued.

Aurora is scheduled to come online in 2018, as an Office of Science budget document that was released earlier this year showed. Theta will arrive in 2016 to support Argonne with the transition from Mira to Aurora. As prime contractor for contract, Intel Federal, a wholly-owned subsidiary of Intel Corp., is responsible for the delivery of the two systems, a position that Intel last held nearly two decades ago with the installment of ASCI Red at the Sandia National Laboratory.

DOE CORAL Argonne Aurora

Undersecretary Orr and many of the other speakers at the event, which included Argonne National Laboratory Director, Peter Littlewood, and several prominent Illinois Congressmen, emphasized the importance of this pre-exascale system for maintaining US global leadership in computing. The machine is on track to enable research goals in areas spanning biological science, material sciences, transportation efficiency, renewable energy, and many more applications that require leadership-class high-performance computing.

It should come as no surprise that Aurora, which is in the running to be the world’s preeminent supercomputer when it comes online, involves a number of new technologies. It will be the first system built on Cray’s “Shasta” architecture, which is a follow on to its current XC series. As described by Cray’s Barry Bolding, Shasta is a combination of new Intel technologies and Cray’s adaptive supercomputing vision. The interim system, Theta, will be based on the Cray XC supercomputer, powered by Intel Xeon processors and “Knights Landing” Phi coprocessors.

“A productive supercomputer has to be able to solve problems both at scale but also to use best-of-breed technologies both from a computing standpoint, interconnect and software standpoint,” noted Bolding at the press event. “We look at systems as holistic, integrated, productive devices that scientists can use, and put to good use, and Shasta, the system architecture that will be the component for this Aurora system, is really a giant step for Cray, a giant step in our collaborations with Intel, and it’s a giant step in our collaboration with the Department of Energy.”

Dave Patterson, president of Intel’s federal unit, characterized the Aurora system as representing a unique architectural direction based on Intel’s HPC scalable system framework. The new framework provides “a flexible blueprint for developing high-performance, balanced, power-efficient and reliable systems capable of supporting both compute- and data-intensive workloads,” said Patterson. “The framework combines Intel’s next-generation Xeon and Xeon Phi processors, OmniPath fabric, Silicon Photonics, innovative memory technologies, and a high-performance software stack along with the ability to efficiently integrate them into a broad spectrum of system solutions.”

The announcement represents the final piece of the CORAL program, the joint procurement effort to secure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore that launched in 2014. Details of the first two systems, Summit and Sierra, were revealed last year as part of a $325 million project. Today’s announcement boosts the total CORAL investment to $525 million.

Aside from the major system announcements, the Office of Science and the National Nuclear Security Administration are making longer-term investments in exascale computing under the DesignForward R&D program. Today $10 million in contracts were awarded to AMD, Cray, IBM and Intel, complementing the $25.4 million that was invested in the first round of DesignForward. Another $100 million in pro-exascale development funding was announced in December 2014 as part of FastForward 2, a joint research and development program between government labs and vendor partners Cray, Intel, NVIDIA and AMD.

One requirement of CORAL was that Oak Ridge National Lab and Argonne National Lab would have architecturally diverse computers to manage risk during a period of rapid technological evolution. As the previously announced CORAL systems, Sierra and Summit, will be based on technology being developed by IBM, NVIDIA and Mellanox, it was expected that Argonne would go a different direction with a Cray-Intel system the likeliest choice.

While Cray took the opportunity to introduce its next-generation Shasta architecture, we still don’t know a lot about the Intel chips that will be part of Aurora. Given the 2018 timeframe, there is a good chance that the Phi processors used in the system will be the third-generation Many Integrated Core (MIC) parts, codenamed Knights Hill. Intel disclosed the name of this future line at SC14, but little else is known, other than they will be on the 10 nanometer process, which offers more density, power and performance. Intel has also said that Knights Hill will carry forward the programming story of high-level compatibility with standards and with Intel architecture.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

NSF Launches Quantum Computing Faculty Fellows Program

October 22, 2018

Efforts to expand quantum computing research capacity continue to accelerate. The National Science Foundation today announced a Quantum Computing & Information Science Faculty Fellows (QCIS-FF) program aimed at devel Read more…

By John Russell

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Join IBM at SC18 and Learn to Harness the Next Generation of AI-focused Supercomputing

Blurring the lines between HPC and AI

Today’s high performance computers are helping clients gain insights at an unprecedented pace. The intersection of artificial intelligence (AI) and HPC can transform industries while solving some of the world’s toughest challenges. Read more…

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This