Last But Not Least: Argonne’s $200 Million Supercomputing Award

By Tiffany Trader

April 9, 2015

A supercomputer named Aurora is on track to become the fastest system in the United States and possibly the world. Just a few hours ago, DOE Undersecretary Franklin “Lynn” Orr, announced that Intel Corp. and Cray Inc. had been selected to supply Argonne National Laboratory with a 180 petaflops system, Aurora, and a secondary system of about 8 petaflops, called Theta, marking the final installment in the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative.

“Aurora is expected to be 18x more powerful than Argonne’s current Mira system, but it will only use 2.7 times as much energy,” said Undersecretary Orr, speaking from the offices of innovative startup space, 1871 Chicago, not far from Argonne National Lab where the new systems will be located. This kind of energy efficiency is crucial for deploying the coming generation of exascale-class supercomputers, he continued.

Aurora is scheduled to come online in 2018, as an Office of Science budget document that was released earlier this year showed. Theta will arrive in 2016 to support Argonne with the transition from Mira to Aurora. As prime contractor for contract, Intel Federal, a wholly-owned subsidiary of Intel Corp., is responsible for the delivery of the two systems, a position that Intel last held nearly two decades ago with the installment of ASCI Red at the Sandia National Laboratory.

DOE CORAL Argonne Aurora

Undersecretary Orr and many of the other speakers at the event, which included Argonne National Laboratory Director, Peter Littlewood, and several prominent Illinois Congressmen, emphasized the importance of this pre-exascale system for maintaining US global leadership in computing. The machine is on track to enable research goals in areas spanning biological science, material sciences, transportation efficiency, renewable energy, and many more applications that require leadership-class high-performance computing.

It should come as no surprise that Aurora, which is in the running to be the world’s preeminent supercomputer when it comes online, involves a number of new technologies. It will be the first system built on Cray’s “Shasta” architecture, which is a follow on to its current XC series. As described by Cray’s Barry Bolding, Shasta is a combination of new Intel technologies and Cray’s adaptive supercomputing vision. The interim system, Theta, will be based on the Cray XC supercomputer, powered by Intel Xeon processors and “Knights Landing” Phi coprocessors.

“A productive supercomputer has to be able to solve problems both at scale but also to use best-of-breed technologies both from a computing standpoint, interconnect and software standpoint,” noted Bolding at the press event. “We look at systems as holistic, integrated, productive devices that scientists can use, and put to good use, and Shasta, the system architecture that will be the component for this Aurora system, is really a giant step for Cray, a giant step in our collaborations with Intel, and it’s a giant step in our collaboration with the Department of Energy.”

Dave Patterson, president of Intel’s federal unit, characterized the Aurora system as representing a unique architectural direction based on Intel’s HPC scalable system framework. The new framework provides “a flexible blueprint for developing high-performance, balanced, power-efficient and reliable systems capable of supporting both compute- and data-intensive workloads,” said Patterson. “The framework combines Intel’s next-generation Xeon and Xeon Phi processors, OmniPath fabric, Silicon Photonics, innovative memory technologies, and a high-performance software stack along with the ability to efficiently integrate them into a broad spectrum of system solutions.”

The announcement represents the final piece of the CORAL program, the joint procurement effort to secure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore that launched in 2014. Details of the first two systems, Summit and Sierra, were revealed last year as part of a $325 million project. Today’s announcement boosts the total CORAL investment to $525 million.

Aside from the major system announcements, the Office of Science and the National Nuclear Security Administration are making longer-term investments in exascale computing under the DesignForward R&D program. Today $10 million in contracts were awarded to AMD, Cray, IBM and Intel, complementing the $25.4 million that was invested in the first round of DesignForward. Another $100 million in pro-exascale development funding was announced in December 2014 as part of FastForward 2, a joint research and development program between government labs and vendor partners Cray, Intel, NVIDIA and AMD.

One requirement of CORAL was that Oak Ridge National Lab and Argonne National Lab would have architecturally diverse computers to manage risk during a period of rapid technological evolution. As the previously announced CORAL systems, Sierra and Summit, will be based on technology being developed by IBM, NVIDIA and Mellanox, it was expected that Argonne would go a different direction with a Cray-Intel system the likeliest choice.

While Cray took the opportunity to introduce its next-generation Shasta architecture, we still don’t know a lot about the Intel chips that will be part of Aurora. Given the 2018 timeframe, there is a good chance that the Phi processors used in the system will be the third-generation Many Integrated Core (MIC) parts, codenamed Knights Hill. Intel disclosed the name of this future line at SC14, but little else is known, other than they will be on the 10 nanometer process, which offers more density, power and performance. Intel has also said that Knights Hill will carry forward the programming story of high-level compatibility with standards and with Intel architecture.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This