Last But Not Least: Argonne’s $200 Million Supercomputing Award

By Tiffany Trader

April 9, 2015

A supercomputer named Aurora is on track to become the fastest system in the United States and possibly the world. Just a few hours ago, DOE Undersecretary Franklin “Lynn” Orr, announced that Intel Corp. and Cray Inc. had been selected to supply Argonne National Laboratory with a 180 petaflops system, Aurora, and a secondary system of about 8 petaflops, called Theta, marking the final installment in the Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative.

“Aurora is expected to be 18x more powerful than Argonne’s current Mira system, but it will only use 2.7 times as much energy,” said Undersecretary Orr, speaking from the offices of innovative startup space, 1871 Chicago, not far from Argonne National Lab where the new systems will be located. This kind of energy efficiency is crucial for deploying the coming generation of exascale-class supercomputers, he continued.

Aurora is scheduled to come online in 2018, as an Office of Science budget document that was released earlier this year showed. Theta will arrive in 2016 to support Argonne with the transition from Mira to Aurora. As prime contractor for contract, Intel Federal, a wholly-owned subsidiary of Intel Corp., is responsible for the delivery of the two systems, a position that Intel last held nearly two decades ago with the installment of ASCI Red at the Sandia National Laboratory.

DOE CORAL Argonne Aurora

Undersecretary Orr and many of the other speakers at the event, which included Argonne National Laboratory Director, Peter Littlewood, and several prominent Illinois Congressmen, emphasized the importance of this pre-exascale system for maintaining US global leadership in computing. The machine is on track to enable research goals in areas spanning biological science, material sciences, transportation efficiency, renewable energy, and many more applications that require leadership-class high-performance computing.

It should come as no surprise that Aurora, which is in the running to be the world’s preeminent supercomputer when it comes online, involves a number of new technologies. It will be the first system built on Cray’s “Shasta” architecture, which is a follow on to its current XC series. As described by Cray’s Barry Bolding, Shasta is a combination of new Intel technologies and Cray’s adaptive supercomputing vision. The interim system, Theta, will be based on the Cray XC supercomputer, powered by Intel Xeon processors and “Knights Landing” Phi coprocessors.

“A productive supercomputer has to be able to solve problems both at scale but also to use best-of-breed technologies both from a computing standpoint, interconnect and software standpoint,” noted Bolding at the press event. “We look at systems as holistic, integrated, productive devices that scientists can use, and put to good use, and Shasta, the system architecture that will be the component for this Aurora system, is really a giant step for Cray, a giant step in our collaborations with Intel, and it’s a giant step in our collaboration with the Department of Energy.”

Dave Patterson, president of Intel’s federal unit, characterized the Aurora system as representing a unique architectural direction based on Intel’s HPC scalable system framework. The new framework provides “a flexible blueprint for developing high-performance, balanced, power-efficient and reliable systems capable of supporting both compute- and data-intensive workloads,” said Patterson. “The framework combines Intel’s next-generation Xeon and Xeon Phi processors, OmniPath fabric, Silicon Photonics, innovative memory technologies, and a high-performance software stack along with the ability to efficiently integrate them into a broad spectrum of system solutions.”

The announcement represents the final piece of the CORAL program, the joint procurement effort to secure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore that launched in 2014. Details of the first two systems, Summit and Sierra, were revealed last year as part of a $325 million project. Today’s announcement boosts the total CORAL investment to $525 million.

Aside from the major system announcements, the Office of Science and the National Nuclear Security Administration are making longer-term investments in exascale computing under the DesignForward R&D program. Today $10 million in contracts were awarded to AMD, Cray, IBM and Intel, complementing the $25.4 million that was invested in the first round of DesignForward. Another $100 million in pro-exascale development funding was announced in December 2014 as part of FastForward 2, a joint research and development program between government labs and vendor partners Cray, Intel, NVIDIA and AMD.

One requirement of CORAL was that Oak Ridge National Lab and Argonne National Lab would have architecturally diverse computers to manage risk during a period of rapid technological evolution. As the previously announced CORAL systems, Sierra and Summit, will be based on technology being developed by IBM, NVIDIA and Mellanox, it was expected that Argonne would go a different direction with a Cray-Intel system the likeliest choice.

While Cray took the opportunity to introduce its next-generation Shasta architecture, we still don’t know a lot about the Intel chips that will be part of Aurora. Given the 2018 timeframe, there is a good chance that the Phi processors used in the system will be the third-generation Many Integrated Core (MIC) parts, codenamed Knights Hill. Intel disclosed the name of this future line at SC14, but little else is known, other than they will be on the 10 nanometer process, which offers more density, power and performance. Intel has also said that Knights Hill will carry forward the programming story of high-level compatibility with standards and with Intel architecture.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This