ISC 2015 Keynoter Thomas Sterling on Memory in HPC

By Nages Sieslack, Public Relations Manager at ISC Events

April 15, 2015

The Wednesday keynote at this year’s ISC High Performance conference by HPC veteran Dr. Thomas Sterling promises to be an enlightening and lively presentation of the HPC year in review. And if previous years are a guide, Dr. Sterling will deliver it with the unique humor and style that has become his trademark.

The late Hans Meuer created this concept of a “continuing series” to complement the other focused talks at this conference, where the international HPC community comes together to contemplate the breadth of progress and the latest trends in this rapidly advancing field. Dr. Sterling has served as medium for this topic for more than a decade now.

Dr. Sterling will be also be chairing a session titled Memory Technologies & Systems for HPC, which will take place the day before his keynote presentation. We got in touch with him recently so he could give us some background on this highly topical subject.

ISC: Could you explain why the memory subsystem has become such a bottleneck in applications performance?

The memory has certainly been a significant bottleneck, which has motivated substantial investment in cache hierarchies and coherency hardware. The separation of processor logic from main memory, in terms of both bandwidth and latency of data access channels, has been a fundamental limitation to program efficiency. In the last decade, this “von Neumann bottleneck” has been aggravated due to multi/many-core processors that have imposed increase demands on the processor/memory interface. These demands have increased exponentially to the present day, with only slow improvements to the socket pins and memory channel bandwidths. Worse has been the inclusion of GPU accelerators that has severely complicated information flow at the memory interface. The use of fast scratch pad memories, NVRAM, and burst buffers, among other innovations, will further impose new architecture and programming advances.

Should codes be written differently to help deal with the memory wall problem or should developers leave such efforts up to the compiler?

The memory wall is a fundamental constraint imposed by the architecture both in terms of latency and bandwidth. To the extent that data reuse can be enhanced through reorganization of data access patterns, the effects of this barrier can be mitigated. Depending on the nesting of loops and the striding of data, the use of compilation techniques, perhaps assisted by auto-tuning, may be able to make better utilization of caches and memory channels. However, the programmer is better informed as to the overall possibilities and should structure the code accordingly.

Performance portability is jeopardized by variations in cache architecture across distinct platforms. Also irregular and time-varying data structures, such as dynamic graphs, make it difficult for either the compiler or the programmer to successfully manage memory traffic due to inadequate foreknowledge of the data access demands. In these cases, advanced runtime systems may deliver new optimization strategies using dynamic adaptive coordination.

The growth of “big data” analytics has greatly expanded the demand for in-memory computing. Is in-memory computing a viable alternative to the distributed memory model HPC has lived with for so long?

Big data analytics emphasizes the importance of support for treating the full system memory as a single resource even though it is physically partitioned and distributed. The notion of in-memory computing is a revival of prior art, although across larger scale problems than ever before. It can greatly improve overall system efficiencies and scalability, especially when supported by advanced hardware mechanisms in the communication network control and the memory system. The HPC vendor community is exploring a number of ideas in this area and we can anticipate significant innovations through the rest of this decade.

3D memory is poised to debut in supercomputers very soon. What do you think are the long-term prospects for this technology in HPC?

Stacking of memory dies is crucial to extending the viability of Moore’s Law by significantly increasing the memory capacity significantly on the motherboard. Of importance is the ability of through silicon vias to deliver substantial bandwidth to drive the combined memory banks while minimizing the latency and latency variability across the memory system.

But 3D packaging will extend beyond the limitations of pure memory chips to include CMOS logic devices, like many-core chips and communication networking dies, possibly with optical interconnects. The challenge of such structures is cooling, with the possibility of micro-channel water-cooling or other fluid through the stack.

Are there other promising memory technologies on the horizon that you think might make a difference for HPC?

There are other emerging memory technologies; perhaps the most significant and immediate are the various forms of NVRAMs which deliver higher density and lower cost than conventional DRAMS. These benefit from economy of scale through mass production for a wide array of mobile computing applications, such as digital cameras and phones. How NVRAMs may be used in the HPC memory hierarchy is still a subject of exploration, with challenges of disparate read and write times combined with capability degradation over time, which will complicate its ultimate manifestation. But the cost benefits it affords will drive this technology to some form of major integration and use.

Scratch pad memories, either SRAM or high speed DRAM, will be employed to augment, if not fully replace, automatic caches. It is ironic that caches, which were first devised to simplify memory hierarchy use, like virtual memory, is sometimes an impediment to both performance and productivity. Scratch pad memories permits explicit control of data allocation where usage models are known and scratch pads can be exploited. Hardly a new idea, early Cray computers employed similar techniques. What is interesting is to what degree compiler advances can facilitate this technology opportunity.

Mass storage may be improved through integration of both processor and memory technologies at the disk sites to process streaming information on the fly, for example, for compression and decompression), and disk drive caching, for example, of meta-data. This is particularly applicable to big data analytics as previously discussed.

I am betting that the biggest advance in future memory systems is going to be the reincarnation of a two-decades-old concept known as PIM or processor in memory. It was first explored around 1992 by Peter Kogge of IBM, Ken Lobst of IDA, Jeff Draper of USC ISI, and Bill Dally, then of MIT, with each working on significantly different forms. PIM integrates logic and primitive controllers onto the same semiconductor dies, with the mainstream memory fabric dramatically increasing bandwidth and reducing effective latencies since all the action can be kept on the chip. While special cases, usually related to the SIMD execution model, have been explored through experimental parts, there has never been a successful generalized component with wide applicability and performance advantage. Since this technology also promises better energy efficiency and given that Moore’s Law is asymptoting – I know: it’s not a word) – this may prove to be the era of opportunity for this innovation. There are many issues to be addressed prior to commercial viability, but exciting work is already being undertaken behind the scenes.

Find out more about Dr. Sterling’s Wednesday keynote here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This