Wrangler and Comet Reflect Changing NSF Priorities

By Tiffany Trader

May 4, 2015

“Early operations mode” describes the status of two NSF-funded systems that are on track to support a wider range of user than is traditionally served by elite-level supercomputing. Wrangler is the Texas Advanced Computing Center (TACC) system that we reported on last week, so now we turn our attention to Comet, the petascale supercomputer readying for launch at San Diego Supercomputer Center (SDSC).

Comet is the outcome of a $12.6 million grant from the National Science Foundation (NSF) to field a system that expands access and capacity across traditional and non-traditional research domains and accommodates the long-tail of science, a concept that refers to more modest-scale jobs that make up a significant portion of research. This move towards broader engagement speaks to NSF’s larger cyberinfrastructure strategy too, a topic we’ll return to after a brief rundown on Comet.

The Dell-integrated cluster occupies 27 racks, with 72 nodes per rack for a total of 1,944 compute nodes. Each node is outfitted with two Intel Xeon E5-2600 v3 12-core processors (running at 2.5GHz), 128 gigabytes of traditional DRAM and 320 gigabytes of local flash memory. A total of 46,656 cores contribute to a peak performance of 2 petaflops.

To optimize capacity for modest-scale jobs, each rack has a full bisection InfiniBand FDR interconnect from Mellanox, with a 4:1 over-subscription across the racks. Comet also claims 7.6 petabytes of Lustre-based high-performance storage, plus 6 petabytes of durable storage for data reliability, as well as 100 Gbps connectivity to Internet2 and ESNet.

The standard Xeon nodes will provide the bulk of the compute capability, but Comet also has 36 GPU nodes, equipped with four NVIDIA GPUs and two Intel processors. And soon it will also have large-memory nodes, outfitted with four Intel processors and 1.5 TB of memory. The heterogeneous configuration will enable Comet to more optimally target specific workloads, such as visualization, molecular dynamics simulations or de novo genome assembly.

Like SDSC’s Gordon supercomputer, as well as TACC’s Wrangler, Comet will become part of the XSEDE (eXtreme Science and Engineering Discovery Environment) system. Comet replaces Trestles, which entered production in early 2011 under an earlier NSF grant.

One of Comet’s more interesting features is its support for high-performance Single Root I/O Virtualization (SR-IOV) at the multi-node cluster level. Comet’s use of SR-IOV will allow virtual sub-clusters to run applications over InfiniBand at near-native speeds. This ‘secret sauce’ lowers the entry barrier for a wide range of researchers by permitting them to use their own software environment, but still attain supercomputer-level performance.

“Comet is really all about providing high-performance computing to a much larger research community – what we call ‘HPC for the 99 percent’ – and serving as a gateway to discovery,” said SDSC Director Michael Norman, the project’s principal investigator. “Comet has been specifically configured to meet the needs of researchers in domains that have not traditionally relied on supercomputers to solve their problems.”

Both Wrangler (at TACC) and Comet (at SDSC) were funded by NSF’s Track 2 program, which formed in 2006 with the mission to award $30 million on a competitive basis every year to deploy a new supercomputer into XSEDE. (Former SDSC User Services Consultant Glenn Lockwood provides a helpful summary of these now archived awards.)

Currently the NSF is investigating a new funding methodology in keeping with its vision for Advanced Computing Infrastructure. As part of the Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), the program focuses “specifically on ensuring that the science and engineering community has ready access to the advanced computational and data-driven capabilities required to tackle the most complex problems and issues facing today’s scientific and educational communities.”

In the most recent solicitation for HPC system acquisition (posted Feb. 14, 2014), the NSF called for “new and creative approaches to delivering innovative computational resources to an increasingly diverse community and portfolio of scientific research and education.”

The shift toward “a more inclusive computing environment” is further clarified in the program guidelines with some of the more salient paragraphs copied below:

Recent developments in computational science have begun to focus on complex, dynamic and diverse workflows, which integrate computation into all areas of the scientific process. Some of these involve applications that are extremely data intensive and may not be dominated by floating point operation speed. While a number of the earlier acquisitions have addressed a subset of these issues, the previous solicitation NSF 13-528 and the current solicitation emphasize these aspects even further.

…Consistent with the Advanced Computing Infrastructure: Vision and Strategic Plan (February 2012), the current solicitation is focused on expanding the use of high-end resources to a much larger and more diverse community. To quote from that strategic plan, the goal is to “… position and support the entire spectrum of NSF-funded communities … and to promote a more comprehensive and balanced portfolio …. to support multidisciplinary computational and data-enabled science and engineering that in turn supports the entire scientific, engineering and educational community.” Thus, while continuing to provide essential and needed resources to the more traditional users of HPC, this solicitation expands the horizon to include research communities that are not users of traditional HPC systems, but who would benefit from advanced computational capabilities at the national level. Building, testing, and deploying these resources within the collaborative ecosystem that encompasses national, regional and campus resources continues to remain a high priority for NSF and one of increasing importance to the science and engineering community.

The results of this solicitation were unveiled in November with the announcement of “Bridges,” focused on problems related to data movement, at the Pittsburgh Supercomputing Center and “Jetstream,” a cloud-based system, co-located at the Indiana University Pervasive Technology Institute and the Texas Advanced Computing Center. The new resources, valued at $16 million, are anticipated to come online in early 2016.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This