IEEE Group Seeks to Reinvent Computing as Scaling Stalls

By George Leopold

May 6, 2015

Computer scientists worried about the end of computing as we know it have been banging heads for several years looking for ways to return to the historical exponential scaling of computer performance. What is needed, say the proponents of an initiative called “Rebooting Computing,” is nothing less than a radical rethinking of how computers are designed in order to achieve the trifecta of greater performance, lower power consumption and “baking security in from the start.”

Thomas Conte, the Georgia Tech engineering professor co-chairing the Rebooting Computing crusade, said he tells his students its either the best or worst time to be studying computer science, depending on what follows Moore’s Law. The outcome of the initiative sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Computer Society will go a long way toward determining whether Conte’s students enter a dead-end field or a new Golden Age of Computing.

Moreover, the IEEE sees a critical application for whatever emerges from its overhaul of computer architectures: the emerging if ill defined Internet of Things. Hence, the effort to reboot computing could ultimately be driven by the technical challenges presented by the IoT.

That outcome could bode well for one viable approach: cloud computing. The abstraction of computing elements in the cloud may offer a way forward, said Conte. “The cloud and IoT change things,” he said in an interview. Together, “they offer a way of enabling the rebooting of computing.”

The cloud and the construct known as the Internet of Things represent more than the incremental approaches of the last decade designed mainly to squeeze the last drops of performance out of computer architectures erected on the foundation of Moore’s Law. But the end is nigh for the driving force of computing over the last several decades: “It’s a basic property of physics that you cannot make transistors too small,” Conte said, “eventually the size of the silicon atoms limit you.”

For computing, the beginning of the end came in the mid-1990s when computer architectures themselves became the limiting factor. The first trick was parallel processing, augmented by superscalar microprocessors. For a time, Conte said, this architecture delivered a doubling of computer performance for roughly the same cost every 18 months.

Eventually, the “speculative execution” of more and more instructions linked higher performance with higher power. This was unsustainable, and the beginning of the end of Moore’s Law surfaced.

Georgia Tech’s Thomas Conte is driving the IEEE’s Rebooting Computing initiative.

The response to this architectural conundrum was multiple computing cores on the same chip, or multicore. Conte argued that this stopgap fundamentally shifted the computing burden from hardware to the programmer. “Software is still brittle,” Conte asserted, and multicore turned out to be little more than a Band-Aid.

This is why the proponents of “rebooting computing” believe applications like IoT could end up driving future computer architectures rather than relying on the inherently sequential processes used by today’s computer programmers.

Then there is a growing list of emerging approaches that Conte acknowledges are considered “lunatic fringe” to the computer industry. But the rebooting computing camp is attempting to steer the conversation away from incremental steps to new ways of building computers for the next set of applications. The question is, Will applications like IoT end up driving computer architectures?

“Can we build computers in a fundamentally different way, to operate on very different algorithms and programming languages than we have today?” Conte asks.

The folks who would reboot computing following a 2014 summit in Silicon Valley. The group’s next summit will be held in December in Washington, D.C.

There is no shortage of “lunatic fringe” computer architectures. What is lacking, Conte and others assert, is the willingness to risk a fundamental overhaul in order to transform computing. It will take a public-private partnership, the IEEE group maintains. (The impetus for “rebooting computing” was a National Science Foundation initiative several years ago to revamp computer education.)

Along with the “Three Pillars” of energy efficiency, new user interfaces and “dynamic security,” the list of possible computing approaches ranges from “neuromorphic” and “approximate” computing to adiabatic, or “reversible,” computing to variations on parallelism.

Quantum computing, which has attracted much investment, shows promise, Conte agreed. “It’s going to have it’s own niche,” he explained, “its own node in the cloud. But it’s not low power.”

A more promising approach, one Conte thinks could fundamentally transform computing, is HP Labs’ “The Machine.”

The HP architecture “fuses” memory and storage, simplifies complex data hierarchies and—in a nod to the era of big data and the IoT—moves processing closer to the data. Unlike today’s computer architectures, The Machine also “bakes” security into hardware and software stacks and promises to deliver the scaling that Moore’s Law no longer can.

“What were trying to do,” Conte adds, “is find a new way of scaling across the hierarchy.”

Another possible source of computer innovation, one that would help cement the public-private partnership sought by the IEEE, is ongoing computer science research at the Defense Advanced Research Projects Agency. DARPA’s Microsystems Technology Office (MTO) spends a lot of money on device research as it searches for a replacement for silicon. But MTO Director William Chappell also stressed it also looking beyond circuit design to find new ways of representing data. Hence, the agency is placing greater emphasis on areas like algorithm development.

For the military, that translates into software-defined capabilities like being able to share scarce spectrum. In the commercial sector, those same techniques could be used to process data from the billions of connected devices and sensors that will make up the IoT.

Chappell comes at the computing problem in a way similar to the IEEE initiative: “Year after year, you start seeing the ‘free ride’ [Moore’s Law] going away.” In other words, the number of transistors keeps rising, but the ability to leverage that processing power is flattening.

Computer scaling is hitting a wall.

The defense agency, like IEEE, sees the same need to reboot computing: “Our computing systems must have the capabilities to handle this ever increasing demand in new ways, exploring new architectures, algorithms/signal processing and hardware,” it said.

The key to all of these efforts, of course, will be moving promising architectures like The Machine from the lab to the supercomputer center and, eventually, to hyper-scale datacenters. These development efforts are aimed at the goal of achieving the next big goal: exascale computing, that is, performance at 1018 calculations per second. This level of performance along with the three pillars of future computing could in turn provide a path to achieving an Internet of Things as a real computing platform rather than merely a marketing construct.

Hence, as Conte notes, the computer architecture of the future would be driven by applications, displacing the old approach in which architectural choices are made, enshrined and the resulting machines perform programs, the programs calculate numbers to a given accuracy or run one instructions after another.

Again, IEEE argues, that’s simply not sustainable in a connected world.

Other applications like weather and climate simulations also illustrate why this sequential approach to computing no longer works. Forecasters can’t predict storm tracks with the accuracy needed to avoid, for example, economic disruptions. The problem is computers and the models they use are not keeping up with the waterfall of satellite data being produced each day. Just this week, for example, the National Oceanic and Atmospheric Administration announced a cloud-based big data effort in an attempt to get its arms around the estimated 20 terabytes of observational data produced each day by U.S. weather satellites.

While chipmakers like Intel focus on selling more chips to add intelligence to IoT devices and networking companies like Cisco Systems build corporate strategies around the “Internet of Everything,” it does appear that a critical mass is emerging to fundamentally rethink how computers are designed and how they will be used in the future.

To that end, Conte said the Rebooting Computing initiative is scheduled to reconvene again at the end of this year in Washington to launch what the president of the IEEE’s Computer Society calls the start of “an earthquake in the computing industry.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire