AMD Refreshes Roadmap, Transitions Back to HPC

By Tiffany Trader

May 7, 2015

AMD revealed key elements of its multi-year strategy as part of its 2015 Financial Analyst Day event in New York on Wednesday. Out of the gate, CEO Lisa Su acknowledged the company’s recent challenges, pointing to a weak PC market and market share losses, before turning her attention to the game plan that AMD is counting on to turn its earnings statement from red to green. It’s a game plan that has AMD returning to the high-end server space as it seeks to diversify its revenue base and grow into new markets.

“We are focused on areas that require high performance compute, high performance graphics, visualization technologies, and complex system on chips,” said Su, who kicked off the proceedings, “those are the areas that are uniquely suited to AMD…and we think this represents about a $60+ billion TAM.”

AMD FAD 2015_3 year game plan slide

“Datacenter is probably the single biggest bet that we are making as a company,” she declared. “We have not been competitive the last few years, we will be competitive in the datacenter market.”

Su also spoke about the decision to exit the SeaMicro dense server system business line “for one because microservers were not growing as fast as originally thought and two we really aren’t a systems company, however on the silicon side, very very clearly we are an x86 company, we have tremendous x86 heritage and are absolutely going to invest in high-performance x86.”

With regard to technology, Su said that AMD portfolio decisions will be focused on high-performance cores, immersive technologies, 2.5/3D packaging and software/APIs. This will align with increased x86 investment, focused ARM investment and a simplified CPU roadmap.

Su also offered an appeasement for those wondering why AMD didn’t make these changes sooner.

“On the platform side, to those of you that ask what have you guys been doing for a couple of years. The truth is, it takes a while to really transform both the R&D capabilities, the technologies and the modularity,” she said.

And now…Getting Zen with simplified roadmaps

The highlight of AMD’s revamped technology roadmap is a brand new x86 processor core codenamed “Zen,” touting improved instructions per clock of up to 40 percent over “Excavator” cores. Absent from the lineup, however, is the Skybridge project. Announced last year, the plan to join x86 and ARM together on a common platform was dropped, according to Su, due to customer feedback indicating a desire for x86 and ARM, but not necessarily in socket-compatible factors.

AMD+FAD+2015_Zen

Mark Papermaster, AMD chief technology officer and senior vice president, addressed AMD’s x86 positioning and laid out some of Zen’s specs in anticipation of its 2016 debut. AMD is counting on its new Zen core to drive its re-entry into high-performance desktop and server markets and put it back on a competitive track against arch rival Intel.

“It’s got high-throughput, very efficient design, and a new cache and memory subsystem design to feed this core,” he said, referring to the feature of simultaneous multi-threading (SMT). The performance is the result of doubling down on the previous generation core, Excavator, due out this summer, said Papermaster.

“This wasn’t one silver bullet,” Papermaster continued, “but a number of elements combining to drive the microarchitecture improvement and deliver what I’ve not seen in the industry before, a 40 percent improvement in instructions per clock.”

It’s the core design for the workload of the future and it’s available next year, he added. It’s also a commitment to sustainable innovation, according to Papermaster, who says the company has leapfrogging design teams and is already working on the successor to Zen as it works to establish a family of cores over time.

Papermaster also revealed that AMD’s first custom 64-bit ARM core, “K12” core, is on track for a 2017 sampling. These enterprise-class ARM cores are designed for efficiency and are intended for server and embedded workloads.

AMD FAD 2015_cg roadmap detail

On the graphics side, AMD is readying to launch its high-performance graphics processing unit (GPU) with die stacked High Bandwidth Memory (HBM) using a 2.5D silicon interposer design. This core is optimized for graphics and parallel compute and includes a number of other enhancements (depicted in the slide below). AMD reported that future generations of its high-performance GPUs will be based on FinFET process technology, which will contribute to a doubling of performance-per-watt.

AMD+FAD+2015_Graphics+Leadership+slide

These three essential chip technologies will be the building blocks of AMD’s Enterprise, Embedded and Semi-Custom Business Group (EESC). A new group launched in 2014 as part of AMD’s business unit reorganization, EESC is focused on high-priority markets that will leverage high-performance CPU and GPU cores inside differentiated solutions.

Forrest Norrod, senior vice president and general manager of the business group, referred to the EESC segment as “a principal driver of growth for the last few years and one we think is central to the growth story of AMD going forward.”

Norrod added that these three businesses (enterprise, embedded and semi-custom) share a perspective around the best way to showcase AMD technology.

“In all of these businesses our customers are building products around the technology ingredients that we give to them and bringing differentiated solutions to the end customer that leverage AMD unique IP,” he stated.

“So we really think now of ESSC as being a continuum leveraging technology, customer relationships and the modular design approach at both the chip as well as the systems level.”

Norad went on to share in broad strokes AMD’s datacenter roadmap for the 2016-2017 timeframe, which includes its next-gen x86 Opteron, next-gen ARM, and an APU that we will be tracking closely.

AMD FAD 2015_eesc roadmap

The upcoming next-generation AMD Opteron processors are based on the x86 “Zen” core and target mainstream servers. These x86 Opterons tout high core count with full multi-threading, disruptive memory bandwidth and high native I/O capacity. Norrrod also introduced “the highest performance ARM server GPUs,” powered by AMD’s upcoming “K12” core.

Most relevant for HPC, though, is the new high-performance server APU, a multi-teraflops chip targeting HPC and workstation markets.

“We’re bringing the APU concept fully into the server realm,” Norrod stated. “These are high performance server APUs offering not just high-performance CPU cores and memory but multi-teraflops GPU-capability, providing a level of performance for machine learning, a level of performance for finite element analysis, and a level of performance for memory bandwidth for reverse time migration algorithms that the oil companies use to do reservoir simulation.”

The APU line (APU stands for accelerated processing unit) is an outcome of the Fusion project, which started in 2006 with AMD’s acquisition of the graphics chipset manufacturer ATI. AMD has talked up the potential benefits of tight CPU-GPU integration for HPC workloads in the past, but until now AMD’s APU efforts have primarily been relegated to desktop space.

In January 2012, AMD rebranded the Fusion platform as the Heterogeneous Systems Architecture (HSA) and has in recent months begun championing the CPU+accelerator architecture for a wide range of workloads, including HPC.

AMD says the next-gen server APU stands to deliver massive improvements to vector applications with scale-up graphics performance, HSA enablement, and optimized memory architecture. “We think we’ve got unique and compelling technology that is only possible by wedding together the CPU and world-class GPU and combining them with an open standard HSA software interface,” said Norrod.

What’s not clear at this point is whether the APU’s multi-teraflops will be of the half- single- or double-precision variety, and the workloads that Norrod lists are a mixed bag in that respect (FEA and machine learning, for example). Of course, there is no reason AMD can’t launch variants for each, but it would be hard to claim HPC cred without an FP64-heavy version.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire