Tracking the Trajectory to Exascale and Beyond

By William Gropp and Thomas Sterling

June 8, 2015

The future of high performance computing is now being defined both in how it will be achieved and in the ways in which it will impact diverse fields in science and technology, industry and commerce, and security and society. At this time there is great expectation but much uncertainty creating a climate of opportunity, challenge, and excitement. It is within this context of forging a future of computation in the crucible of innovation that we have been invited by HPCwire to host an ongoing series of informational articles tracking this trajectory to exascale computing and beyond. The answers are not yet established but the possibilities are currently emerging and the path or paths to be traversed towards these goals are only now coming into view.

It will be our pleasure over the ensuing months to guide this series of news articles, editorials, interviews, discussions, and perhaps some debates to provide and stimulate an open forum of consideration and dialog within these virtual pages and broad readership. We hope you will join us on this voyage of exploration as we illuminate and explore the rapidly evolving field of exascale computing towards the new frontiers of capability and discovery.

Dr. Bill Gropp
Dr. William Gropp

Even as we casually interject the term “exascale”, we as a community inadequately define or determine it’s meaning, at least in a specific and widely adopted way. Is it achieving: 1 Exaflops Rmax on the Linpack benchmark (HPL) or is it a thousand times the capability of current generation Petaflops class systems? Is it merely a single point on a many thousand-fold progression of performance (more than four so far in the lifetime of a single individual) or rather a trans-performance regime spanning a range of achievement across the three orders of magnitude from an exaflops to the ethereal heights approaching a Zetaflops; a rarely employed term even now. Is it even about flops (floating point operations per second)? In the age of “big data”, graph processing, and embedded and mobile computing it is apparent that floating-point operations are not the only important measure of performance. Integer operations, memory references, and data handling may be at least as important.

Dr. Thomas Sterling
Dr. Thomas Sterling

For systems of the future (even the biggest ones now) there is great concern about total energy usage and power demand. Although subjective, one asserted threshold of pain is anything beyond 20 Megawatts. Yet Tienhe-2 already surpasses that when cooling is included, and commercial data centers already consume more than 100MW. A 20 MW limit imposes an average energy cost of about 20 Pica-Joules per floating point operation where today’s most “green” systems achieve a few Gigaflops per Watt. A rule of thumb is that a Megawatt per year costs approximately $1M. This is only one of several factors that will challenge practical computing in the exascale performance regime and era. We will consider over the succeeding weeks and months a post-modern view of performance, productivity, and even other less familiar properties as portability and generality.

But even more important than the what is perhaps the why. How often does one hear the question — “do we really need exaflops?” Over the following months we will invite experts to document diverse compelling cases where exascale computing is not only useful but essential for critical breakthroughs. Such politically charged domains as climate change demand degrees of resolution in time, space, and phenomenology to clarify, refine, and ultimately determine the validity of models as well as their implication for anthropogenic CO2 contributions.

On the brighter side (perhaps literally) is the potential impact of exascale computing to the ultimate realization of such alternatives to fossil fueled energy sources as controlled fusion. Here computing may not only determine the feasible designs for this potentially ultimate source of power but also be critical to its real-time control to make it possible. More than powering civilization on Earth, the same technologies enable projecting advanced human civilization into the solar system and beyond by the end of the 21st Century. Composite materials, microbiology, medical diagnosis, design optimizations, and even machine intelligence may all yield to computing in the exascale era. These and other application domains will be explored and discussed throughout this series. Beyond justifying the creation of exascale platforms, such detailed discussions will help determine their design and operational properties and how to achieve them.

The challenge to realizing exascale computing is not just about putting together enough hardware, or worrying about getting the energy down, or the creation of a new parallel programming language, or the crafting of new algorithms and applications. It is all these things and more and they are all interrelated in important and nuanced ways. There may not even be a single solution but rather a number of different design points both because of various opportunities and ideas and also because there are differences in the usage profiles of the application workloads and their resource requirements. It is also about responsible progress sustaining not just for future application codes but for literally decades of legacy programs upon which there is heavy dependence for agency mission critical problems, basic and applied science, and industrial and commercial applications. This challenge of innovation and continuity is one of the great problems faced by the community and that will be discussed throughout this HPCwire series of articles on exascale computing.

Advances in device technology will be essential in enabling future computing opportunities but will also be challenging. Semiconductor feature size is expected to shrink to 5 nanometers by the end of this decade yielding perhaps a density growth of about an order of magnitude. Yet this also reflects the approaching end of Moore’s Law and even then the power consumption demands may limit the practical use of the full capabilities of chips and full systems. There is promising work in all of these areas and we explore these innovative approaches to the hardware needed for Exascale systems. Other factors that have confronted system design and usage in the past also challenge the future of exascale. These include parallelism, latency of local and global access, memory hierarchies, overheads for control, and contention for shared resources. We will explore these opportunities versus challenges tradeoffs and possible strategies to optimizing within the design space now and in the exascale future in the pages of this HPCwire series.

Exascale_readmore copyExascale is not just about the very biggest computing systems, it is about extreme capabilities at many scales. Perhaps the most exciting promise of exascale is the ubiquitous availability of Petaflops capable computing in the next decade. A single rack with a power consumption of 50 Kilowatts will be able to deliver 1 Petaflops well within 10 years. Thus exascale technology, which may at full capability sit on the raised floors of national centers worldwide, will also put Petaflops in the hands of most scientists, academics, and industry product developers. These systems are likely to cost on the order of $250K, well within the budget of many user domains. They will serve as end computing platforms but also as the training grounds for those who will need more computing power to solve their biggest problems.

The motivation of this new publication series is to build a bridge between the general HPC community and the industrial, academic, and government experts who are dedicated to realizing this exciting dream of practical exascale computing. Over the next months, you will see invited articles, interviews, editorials, and news briefs that will lay out the path even as the journey has begun. We the editors will serve as guides through this complex and changing space of discovery. We solicit questions and comments from our readership to help improve the discourse and story. We are delighted to have the opportunity to serve in this capacity and thank HPCwire for their support and encouragement in doing so.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This