Tracking the Trajectory to Exascale and Beyond

By William Gropp and Thomas Sterling

June 8, 2015

The future of high performance computing is now being defined both in how it will be achieved and in the ways in which it will impact diverse fields in science and technology, industry and commerce, and security and society. At this time there is great expectation but much uncertainty creating a climate of opportunity, challenge, and excitement. It is within this context of forging a future of computation in the crucible of innovation that we have been invited by HPCwire to host an ongoing series of informational articles tracking this trajectory to exascale computing and beyond. The answers are not yet established but the possibilities are currently emerging and the path or paths to be traversed towards these goals are only now coming into view.

It will be our pleasure over the ensuing months to guide this series of news articles, editorials, interviews, discussions, and perhaps some debates to provide and stimulate an open forum of consideration and dialog within these virtual pages and broad readership. We hope you will join us on this voyage of exploration as we illuminate and explore the rapidly evolving field of exascale computing towards the new frontiers of capability and discovery.

Dr. Bill Gropp
Dr. William Gropp

Even as we casually interject the term “exascale”, we as a community inadequately define or determine it’s meaning, at least in a specific and widely adopted way. Is it achieving: 1 Exaflops Rmax on the Linpack benchmark (HPL) or is it a thousand times the capability of current generation Petaflops class systems? Is it merely a single point on a many thousand-fold progression of performance (more than four so far in the lifetime of a single individual) or rather a trans-performance regime spanning a range of achievement across the three orders of magnitude from an exaflops to the ethereal heights approaching a Zetaflops; a rarely employed term even now. Is it even about flops (floating point operations per second)? In the age of “big data”, graph processing, and embedded and mobile computing it is apparent that floating-point operations are not the only important measure of performance. Integer operations, memory references, and data handling may be at least as important.

Dr. Thomas Sterling
Dr. Thomas Sterling

For systems of the future (even the biggest ones now) there is great concern about total energy usage and power demand. Although subjective, one asserted threshold of pain is anything beyond 20 Megawatts. Yet Tienhe-2 already surpasses that when cooling is included, and commercial data centers already consume more than 100MW. A 20 MW limit imposes an average energy cost of about 20 Pica-Joules per floating point operation where today’s most “green” systems achieve a few Gigaflops per Watt. A rule of thumb is that a Megawatt per year costs approximately $1M. This is only one of several factors that will challenge practical computing in the exascale performance regime and era. We will consider over the succeeding weeks and months a post-modern view of performance, productivity, and even other less familiar properties as portability and generality.

But even more important than the what is perhaps the why. How often does one hear the question — “do we really need exaflops?” Over the following months we will invite experts to document diverse compelling cases where exascale computing is not only useful but essential for critical breakthroughs. Such politically charged domains as climate change demand degrees of resolution in time, space, and phenomenology to clarify, refine, and ultimately determine the validity of models as well as their implication for anthropogenic CO2 contributions.

On the brighter side (perhaps literally) is the potential impact of exascale computing to the ultimate realization of such alternatives to fossil fueled energy sources as controlled fusion. Here computing may not only determine the feasible designs for this potentially ultimate source of power but also be critical to its real-time control to make it possible. More than powering civilization on Earth, the same technologies enable projecting advanced human civilization into the solar system and beyond by the end of the 21st Century. Composite materials, microbiology, medical diagnosis, design optimizations, and even machine intelligence may all yield to computing in the exascale era. These and other application domains will be explored and discussed throughout this series. Beyond justifying the creation of exascale platforms, such detailed discussions will help determine their design and operational properties and how to achieve them.

The challenge to realizing exascale computing is not just about putting together enough hardware, or worrying about getting the energy down, or the creation of a new parallel programming language, or the crafting of new algorithms and applications. It is all these things and more and they are all interrelated in important and nuanced ways. There may not even be a single solution but rather a number of different design points both because of various opportunities and ideas and also because there are differences in the usage profiles of the application workloads and their resource requirements. It is also about responsible progress sustaining not just for future application codes but for literally decades of legacy programs upon which there is heavy dependence for agency mission critical problems, basic and applied science, and industrial and commercial applications. This challenge of innovation and continuity is one of the great problems faced by the community and that will be discussed throughout this HPCwire series of articles on exascale computing.

Advances in device technology will be essential in enabling future computing opportunities but will also be challenging. Semiconductor feature size is expected to shrink to 5 nanometers by the end of this decade yielding perhaps a density growth of about an order of magnitude. Yet this also reflects the approaching end of Moore’s Law and even then the power consumption demands may limit the practical use of the full capabilities of chips and full systems. There is promising work in all of these areas and we explore these innovative approaches to the hardware needed for Exascale systems. Other factors that have confronted system design and usage in the past also challenge the future of exascale. These include parallelism, latency of local and global access, memory hierarchies, overheads for control, and contention for shared resources. We will explore these opportunities versus challenges tradeoffs and possible strategies to optimizing within the design space now and in the exascale future in the pages of this HPCwire series.

Exascale_readmore copyExascale is not just about the very biggest computing systems, it is about extreme capabilities at many scales. Perhaps the most exciting promise of exascale is the ubiquitous availability of Petaflops capable computing in the next decade. A single rack with a power consumption of 50 Kilowatts will be able to deliver 1 Petaflops well within 10 years. Thus exascale technology, which may at full capability sit on the raised floors of national centers worldwide, will also put Petaflops in the hands of most scientists, academics, and industry product developers. These systems are likely to cost on the order of $250K, well within the budget of many user domains. They will serve as end computing platforms but also as the training grounds for those who will need more computing power to solve their biggest problems.

The motivation of this new publication series is to build a bridge between the general HPC community and the industrial, academic, and government experts who are dedicated to realizing this exciting dream of practical exascale computing. Over the next months, you will see invited articles, interviews, editorials, and news briefs that will lay out the path even as the journey has begun. We the editors will serve as guides through this complex and changing space of discovery. We solicit questions and comments from our readership to help improve the discourse and story. We are delighted to have the opportunity to serve in this capacity and thank HPCwire for their support and encouragement in doing so.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire