Fixating on Exascale Performance Only Is a Bad Idea

By John Russell

June 15, 2015

Few in the computing industry dispute that achieving ‘exascale’ performance is worthy on its own merits. But fixating only on the magic milestone (10^18 FLOPS) misses an important point – HPC as currently practiced, even at the exascale level, won’t solve the grand challenges in science and society contends Dr. Sadasivan Shankar, Harvard University visiting lecturer and long-time prominent Intel materials scientist.

“I would argue that exascale is more than just exascale. It’s a new way of thinking. I would even argue that [when] petascale came along a lot of us who were using large scale computing didn’t see the benefits. If we are planning to solve some of the large scale grand problems in science and society today, the premise I am putting forth is we should do it a little differently,” Dr. Shankar told the audience at the recent HPC User Forum.

The new evolving paradigm, at least in materials science, is In Silico Inverse Design, proposed Dr. Shankar in his presentation – Exascale for Grand Challenge Problems in Sciences and Engineering. He presented his case for inverse design by examining emerging disruptive technologies in both science and society, identifying commonality in the challenges they represent (e.g. scale and combinatorial complexity), and presented a small sample of related computational challenges.

Many in the computer industry may know Dr. Shankar, who is the first Margaret and Will Hearst Visiting Lecturer in Computational Science and Engineering at Harvard School of Engineering and Applied Sciences. He was formerly an Intel scientist working in semiconductor materials, design and manufacturing.

During his tenure in the semiconductor industry Dr. Shankar worked on initiatives using computational modeling to optimize semiconductor processing and equipment for several technology generations, advanced process control using physics-based models, thermo-mechanical reliability of microprocessors, thermal modeling of 3D die stacking, and using thermodynamic principles to estimate energy efficiency of ideal computing architectures. He is a co-inventor in several patent filings covering areas in chemical reactor designs, semiconductor processes, bulk and nano materials, device structures, and algorithms (fuller bio).

The core of his argument is that in silico inverse design represents an emerging paradigm characterized by distinct computational requirements that are different and challenging as compared to direct design. Not a new concept, inverse design has gained traction in recent years. The Department of Energy’s Center for Inverse Design offers the following description:

“…To address a crucial scientific grand challenge…rather than using the conventional direct approach (Given the structure, find the electronic properties), we are using a “materials by inverse design” approach (Given the desired property, find the structure).

“The target properties of interest include general semiconductor optical and electrical properties; the desired materials functionalities include electron- and hole-conductive transparent conductors, solar absorbers, and nanostructures for energy sustainability. Our predictions of materials are examined iteratively by various synthetic approaches, including high-throughput parallel materials science.”

Dr. Shankar’s succinct definition is “the ability to use predictive capabilities, to design a material, which when synthesized in the manufacturing line will exhibit targeted properties.” He is quick to add, because of the approach “It’s not always guaranteed there is, in fact, a solution.”

Screen Shot 2015-06-14 at 6.02.55 PMA nuanced theory perhaps best heard directly from Dr. Shankar (link to a video of his presentation is at the end of the article); it is nonetheless possible to outline some of the central ideas he presented. Number one, science and technology have advanced to the point, he contends, that the direct design approach no longer works as well. Number two, the disruptive challenges facing both science and society share important technology commonalities best addressed by inverse design.

He cited work (McKinsey) that identified the top technology-based disruptive forces in the worldwide economy and business as: mobile internet, automation, internet of things, advanced robotics, autonomous and non autonomous vehicles, next-gen genomics, energy storage, 3d printing, advanced materials, advanced oil and gas exploration, and renewable energy.

“Traditionally disruptions are caused by emergence of a different kind of material, different kind of process, or a different way of doing something. Those cited here are expected to completely upstage the worldwide economy by 2025,” he said.

DOE offers a list of five expected scientific disruptors: control of material processes at the level of atoms and electrons; design and perfect atom- and energy- efficient synthesis of revolutionary new forms of matter with tailored properties; emergence of remarkable properties of matter from complex correlations of the atomic or electronic constituents and optimal control of these properties; characterization and control matter of non-equilibrium systems; leverage knowledge of energy and information interactions from living beings at the nanoscale to design systems with high energy efficiencies.

“If you look at these challenges (science and business) side by side and look for commonalities you could distill them to five items: 1) design, 2) materials and devices, 3) sensing, 4) automation and 5) miniaturization, fabrication and testing,” he said, all of which are well suited to inverse design.

Leaving science aside for a moment, Dr. Shankar noted the political landscape is shifting in support of funding supercomputing generally and exascale in specific (See Obama’s 2016 Budget Boosts R&D, Exascale Funding, HPCwire. The Partnership for Advanced Computing in Europe (PRACE) is also chasing exascale. China, of course, has the fastest supercomputer on the TOP500 list.)

Amid the rush to reach exascale Dr. Shankar believes the practicality of turning a quintillion FLOPS into real-world applications is perhaps not getting enough attention. The race to exascale (and resulting technologies and architectures) should be well informed by real-world applications and requirements of inverse design methodology – nowhere more so than in material science which has such a direct effect on economies and progress.

In semiconductor materials synthesis generally there are at least six challenges said Shankar: “One is the ability to measure; the second is the ability to synthesize; the third is the intrinsic disparity in scales; the fourth is being able to compute as needed; the fifth is complexity; and sixth is the daunting combinatorics associated with trying to go from a small scale to a large scale.”

Screen Shot 2015-06-14 at 5.53.51 PMConsider the combinatorial challenge associated with semiconductor material synthesis.

“If you look at the number of elements you could use it’s about 60 to 70, basically anything that’s not toxic. If you look at how you can mix them up into alloys or compounds, there are about 100,000. Now if you take two of these materials and try to create a junction now the possibilities are in the billions,” said Dr. Shankar. This number quickly grows to trillion and beyond as the number of interfaces between structures grow.

“In my talk, I was trying to synthesize 4 complex premises [in addressing these challenges],” said Dr. Shankar:

  • Computational Design of Materials and Chemistry and why computing can play a key role
  • Sub-points for bio and systems biology also benefit
  • Eco-system is changing in favor of computing, both in terms of needs and political support
  • Disruptions in technology and fundamental sciences could be connected by computing

“Computing will be connecting the dots but not computing the way we do traditional compute,” he said. Here is a link to the full video of Dr. Shanker’s presentation.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This