Fixating on Exascale Performance Only Is a Bad Idea

By John Russell

June 15, 2015

Few in the computing industry dispute that achieving ‘exascale’ performance is worthy on its own merits. But fixating only on the magic milestone (10^18 FLOPS) misses an important point – HPC as currently practiced, even at the exascale level, won’t solve the grand challenges in science and society contends Dr. Sadasivan Shankar, Harvard University visiting lecturer and long-time prominent Intel materials scientist.

“I would argue that exascale is more than just exascale. It’s a new way of thinking. I would even argue that [when] petascale came along a lot of us who were using large scale computing didn’t see the benefits. If we are planning to solve some of the large scale grand problems in science and society today, the premise I am putting forth is we should do it a little differently,” Dr. Shankar told the audience at the recent HPC User Forum.

The new evolving paradigm, at least in materials science, is In Silico Inverse Design, proposed Dr. Shankar in his presentation – Exascale for Grand Challenge Problems in Sciences and Engineering. He presented his case for inverse design by examining emerging disruptive technologies in both science and society, identifying commonality in the challenges they represent (e.g. scale and combinatorial complexity), and presented a small sample of related computational challenges.

Many in the computer industry may know Dr. Shankar, who is the first Margaret and Will Hearst Visiting Lecturer in Computational Science and Engineering at Harvard School of Engineering and Applied Sciences. He was formerly an Intel scientist working in semiconductor materials, design and manufacturing.

During his tenure in the semiconductor industry Dr. Shankar worked on initiatives using computational modeling to optimize semiconductor processing and equipment for several technology generations, advanced process control using physics-based models, thermo-mechanical reliability of microprocessors, thermal modeling of 3D die stacking, and using thermodynamic principles to estimate energy efficiency of ideal computing architectures. He is a co-inventor in several patent filings covering areas in chemical reactor designs, semiconductor processes, bulk and nano materials, device structures, and algorithms (fuller bio).

The core of his argument is that in silico inverse design represents an emerging paradigm characterized by distinct computational requirements that are different and challenging as compared to direct design. Not a new concept, inverse design has gained traction in recent years. The Department of Energy’s Center for Inverse Design offers the following description:

“…To address a crucial scientific grand challenge…rather than using the conventional direct approach (Given the structure, find the electronic properties), we are using a “materials by inverse design” approach (Given the desired property, find the structure).

“The target properties of interest include general semiconductor optical and electrical properties; the desired materials functionalities include electron- and hole-conductive transparent conductors, solar absorbers, and nanostructures for energy sustainability. Our predictions of materials are examined iteratively by various synthetic approaches, including high-throughput parallel materials science.”

Dr. Shankar’s succinct definition is “the ability to use predictive capabilities, to design a material, which when synthesized in the manufacturing line will exhibit targeted properties.” He is quick to add, because of the approach “It’s not always guaranteed there is, in fact, a solution.”

Screen Shot 2015-06-14 at 6.02.55 PMA nuanced theory perhaps best heard directly from Dr. Shankar (link to a video of his presentation is at the end of the article); it is nonetheless possible to outline some of the central ideas he presented. Number one, science and technology have advanced to the point, he contends, that the direct design approach no longer works as well. Number two, the disruptive challenges facing both science and society share important technology commonalities best addressed by inverse design.

He cited work (McKinsey) that identified the top technology-based disruptive forces in the worldwide economy and business as: mobile internet, automation, internet of things, advanced robotics, autonomous and non autonomous vehicles, next-gen genomics, energy storage, 3d printing, advanced materials, advanced oil and gas exploration, and renewable energy.

“Traditionally disruptions are caused by emergence of a different kind of material, different kind of process, or a different way of doing something. Those cited here are expected to completely upstage the worldwide economy by 2025,” he said.

DOE offers a list of five expected scientific disruptors: control of material processes at the level of atoms and electrons; design and perfect atom- and energy- efficient synthesis of revolutionary new forms of matter with tailored properties; emergence of remarkable properties of matter from complex correlations of the atomic or electronic constituents and optimal control of these properties; characterization and control matter of non-equilibrium systems; leverage knowledge of energy and information interactions from living beings at the nanoscale to design systems with high energy efficiencies.

“If you look at these challenges (science and business) side by side and look for commonalities you could distill them to five items: 1) design, 2) materials and devices, 3) sensing, 4) automation and 5) miniaturization, fabrication and testing,” he said, all of which are well suited to inverse design.

Leaving science aside for a moment, Dr. Shankar noted the political landscape is shifting in support of funding supercomputing generally and exascale in specific (See Obama’s 2016 Budget Boosts R&D, Exascale Funding, HPCwire. The Partnership for Advanced Computing in Europe (PRACE) is also chasing exascale. China, of course, has the fastest supercomputer on the TOP500 list.)

Amid the rush to reach exascale Dr. Shankar believes the practicality of turning a quintillion FLOPS into real-world applications is perhaps not getting enough attention. The race to exascale (and resulting technologies and architectures) should be well informed by real-world applications and requirements of inverse design methodology – nowhere more so than in material science which has such a direct effect on economies and progress.

In semiconductor materials synthesis generally there are at least six challenges said Shankar: “One is the ability to measure; the second is the ability to synthesize; the third is the intrinsic disparity in scales; the fourth is being able to compute as needed; the fifth is complexity; and sixth is the daunting combinatorics associated with trying to go from a small scale to a large scale.”

Screen Shot 2015-06-14 at 5.53.51 PMConsider the combinatorial challenge associated with semiconductor material synthesis.

“If you look at the number of elements you could use it’s about 60 to 70, basically anything that’s not toxic. If you look at how you can mix them up into alloys or compounds, there are about 100,000. Now if you take two of these materials and try to create a junction now the possibilities are in the billions,” said Dr. Shankar. This number quickly grows to trillion and beyond as the number of interfaces between structures grow.

“In my talk, I was trying to synthesize 4 complex premises [in addressing these challenges],” said Dr. Shankar:

  • Computational Design of Materials and Chemistry and why computing can play a key role
  • Sub-points for bio and systems biology also benefit
  • Eco-system is changing in favor of computing, both in terms of needs and political support
  • Disruptions in technology and fundamental sciences could be connected by computing

“Computing will be connecting the dots but not computing the way we do traditional compute,” he said. Here is a link to the full video of Dr. Shanker’s presentation.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This