Four Challenges Facing Exascale Application Prep

By John Russell

June 22, 2015

Worry over readying HPC applications for exascale computing isn’t new and various efforts are underway. Whether they are sufficient is a matter of debate. A major stumbling block, of course, is no one knows precisely what exascale architecture will look like. A recent paper (June 9) on arXiv.org from IBM Research and several European academic researchers proposes an approach for tackling the problem.

The paper, Challenges and Recommendations for Preparing HPC Applications for Exascale[i], identifies four key challenges and outlines how a conceptual framework might be used to ready HPC applications for eventual porting to exascale machines.

Pointedly, the authors note petaflop computing arrived in 2008 and still only a few applications are able to fully exploit petaflops capability. Currently, the total performance of all the Top500 computers is about 0.3 exaFLOPS.

“We suggest that porting of HPC applications should be made by successive, stepwise improvements based on the currently available assumptions and data about Exascale systems,” they write. “This approach should support application improvement each time new information about future Exascale systems becomes available, including the time when the application is actually deployed and runs on a concrete Exascale system.”

“A high-level application representation that captures key functional and non-functional properties in conjunction with the abstract machine model will enable programmers and tools to reason about and perform application improvements, and will serve as input to runtime systems to handle performance and energy optimizations and self-aware fault management.”

The authors are, in order of listing: Erika Abraham (RWTH Aachen University); Costas Bekas (IBM Research, Zurich); Ivona Brandic (Vienna University of Technology); Samir Genaim (Complutense University of Madrid); Einar Broch Johnson (University of Oslo, Department of Informatics); Ivan Kondovk (Karlsruhe Institute of Technology); Sabri Pllana (Linnaeus University, Department of Computer Science); and Achim Streitk (Karlsruhe Institute of Technology).

They write that a tunable abstract machine model that encapsulates current assumptions about exascale machines would enable a priori application improvement before the concrete execution platform is known as well as posteriori tuning.

The authors identify four challenges such a framework would need to address:

  • Formal modeling.
  • Static analysis and optimization.
  • Runtime analysis and optimization.
  • Autonomic computing.

A schematic of their framework is shown here.

Screen Shot 2015-06-20 at 4.33.53 PM

The brief paper is best read in full, but a review of their approach to solving one of the challenges provides insight into their approach. Challenge number one, formal modeling, is a basic requirement. They ask and then answer, what should such a model do and how might it be approached:

“We believe that relevant information in this context is not what the code aims to achieve (the result of the computation) but its corresponding resource footprints, that is, how computational tasks communicate and synchronize, the amount of resources (such as memory and computing time) these tasks require, and how they access and move data.”

“In order to adapt the HPC code to a particular architecture we need to capture such resource footprints of software modules at different levels of granularity (e.g., program statements, blocks in procedure bodies and whole procedures), and be able to compare different task compositions. Consequently, the modeling language must feature massively parallel operators over such task-level resource footprints [5]. A similar notion of resource footprints and composition can be used to express the properties of the architecture in a machine model to capture the resources that the architecture can make available to the code.

“Working with resource footprints can be supported by an abstract behavioral specification language [6], in which models describe both tasks and deployments. These models can be used to predict the non-functional behavior of code before it is deployed, and to compare deployments using formal methods.”

Use of a Domain Specific Exascale Language (DSEL) is also an important enabler; it would allow programmers “to express non-functional aspects (like required time to solution, resilience or energy efficiency) of the execution of scalable parallel HPC codes.”

The authors acknowledge and briefly touch on related work including for example the EXA2GREEN project, Autotune[ii], the DEEP project, and CRESTA project. In their conclusion, they say:

“Exascale promise faces a series of obstacles, with the most difficult being energy, scalability, reliability and programmability. Our proposal is to develop a holistic, unifying and mathematically founded framework to systematically attack the roots of these problems. That is, instead of attacking these problems separately, we propose a holistic approach to study them as a multi-parametric problem which will allow us to deeply understand their interplay and thus make the right decisions to navigate in this complex landscape.”

The paper is a succinct and worthwhile read. With exascale expected in the 2020 timeframe the effort to get HPC applications ready for port now is a critical component.

[i] http://arxiv.org/pdf/1503.06974v2.pdf

[ii] R. Miceli, G. Civario, A. Sikora, E. Ce ́sar, M. Gerndt, H. Haitof, C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin, “Autotune: A plugin-driven approach to the automatic tuning of parallel applications,” in Applied Parallel and Scientific Computing, ser. Lecture Notes in Computer Science. Springer, 2013, vol. 7782, pp. 328–342.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This