Four Challenges Facing Exascale Application Prep

By John Russell

June 22, 2015

Worry over readying HPC applications for exascale computing isn’t new and various efforts are underway. Whether they are sufficient is a matter of debate. A major stumbling block, of course, is no one knows precisely what exascale architecture will look like. A recent paper (June 9) on arXiv.org from IBM Research and several European academic researchers proposes an approach for tackling the problem.

The paper, Challenges and Recommendations for Preparing HPC Applications for Exascale[i], identifies four key challenges and outlines how a conceptual framework might be used to ready HPC applications for eventual porting to exascale machines.

Pointedly, the authors note petaflop computing arrived in 2008 and still only a few applications are able to fully exploit petaflops capability. Currently, the total performance of all the Top500 computers is about 0.3 exaFLOPS.

“We suggest that porting of HPC applications should be made by successive, stepwise improvements based on the currently available assumptions and data about Exascale systems,” they write. “This approach should support application improvement each time new information about future Exascale systems becomes available, including the time when the application is actually deployed and runs on a concrete Exascale system.”

“A high-level application representation that captures key functional and non-functional properties in conjunction with the abstract machine model will enable programmers and tools to reason about and perform application improvements, and will serve as input to runtime systems to handle performance and energy optimizations and self-aware fault management.”

The authors are, in order of listing: Erika Abraham (RWTH Aachen University); Costas Bekas (IBM Research, Zurich); Ivona Brandic (Vienna University of Technology); Samir Genaim (Complutense University of Madrid); Einar Broch Johnson (University of Oslo, Department of Informatics); Ivan Kondovk (Karlsruhe Institute of Technology); Sabri Pllana (Linnaeus University, Department of Computer Science); and Achim Streitk (Karlsruhe Institute of Technology).

They write that a tunable abstract machine model that encapsulates current assumptions about exascale machines would enable a priori application improvement before the concrete execution platform is known as well as posteriori tuning.

The authors identify four challenges such a framework would need to address:

  • Formal modeling.
  • Static analysis and optimization.
  • Runtime analysis and optimization.
  • Autonomic computing.

A schematic of their framework is shown here.

Screen Shot 2015-06-20 at 4.33.53 PM

The brief paper is best read in full, but a review of their approach to solving one of the challenges provides insight into their approach. Challenge number one, formal modeling, is a basic requirement. They ask and then answer, what should such a model do and how might it be approached:

“We believe that relevant information in this context is not what the code aims to achieve (the result of the computation) but its corresponding resource footprints, that is, how computational tasks communicate and synchronize, the amount of resources (such as memory and computing time) these tasks require, and how they access and move data.”

“In order to adapt the HPC code to a particular architecture we need to capture such resource footprints of software modules at different levels of granularity (e.g., program statements, blocks in procedure bodies and whole procedures), and be able to compare different task compositions. Consequently, the modeling language must feature massively parallel operators over such task-level resource footprints [5]. A similar notion of resource footprints and composition can be used to express the properties of the architecture in a machine model to capture the resources that the architecture can make available to the code.

“Working with resource footprints can be supported by an abstract behavioral specification language [6], in which models describe both tasks and deployments. These models can be used to predict the non-functional behavior of code before it is deployed, and to compare deployments using formal methods.”

Use of a Domain Specific Exascale Language (DSEL) is also an important enabler; it would allow programmers “to express non-functional aspects (like required time to solution, resilience or energy efficiency) of the execution of scalable parallel HPC codes.”

The authors acknowledge and briefly touch on related work including for example the EXA2GREEN project, Autotune[ii], the DEEP project, and CRESTA project. In their conclusion, they say:

“Exascale promise faces a series of obstacles, with the most difficult being energy, scalability, reliability and programmability. Our proposal is to develop a holistic, unifying and mathematically founded framework to systematically attack the roots of these problems. That is, instead of attacking these problems separately, we propose a holistic approach to study them as a multi-parametric problem which will allow us to deeply understand their interplay and thus make the right decisions to navigate in this complex landscape.”

The paper is a succinct and worthwhile read. With exascale expected in the 2020 timeframe the effort to get HPC applications ready for port now is a critical component.

[i] http://arxiv.org/pdf/1503.06974v2.pdf

[ii] R. Miceli, G. Civario, A. Sikora, E. Ce ́sar, M. Gerndt, H. Haitof, C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin, “Autotune: A plugin-driven approach to the automatic tuning of parallel applications,” in Applied Parallel and Scientific Computing, ser. Lecture Notes in Computer Science. Springer, 2013, vol. 7782, pp. 328–342.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire