Dell Aims PowerEdge C-Series Platform for HPC and Beyond

By Tiffany Trader

June 30, 2015

Dell has positioned its latest PowerEdge C-series platform to meet the needs of both traditional HPC and the hyperscale market. The recently hatched PowerEdge C6320 is outfitted with the latest generation Intel Xeon E5-2600 v3 processors, providing up to 18 cores per socket (144 cores per 2U chassis), up to 512GB of DDR4 memory and up to 72TB of flexible local storage.

HPCwire spoke with Brian Payne, executive director of Dell Server Solutions, to explore how the new PowerEdge C6320 fits in with Dell’s broader portfolio and approach to the widening HPC space.

With two Intel Xeon E5- 2699 processors, the new server offers a 2x performance improvement on the Linpack benchmark, delivering 999 gigaflops compared with 498 gigaflops from the previous generation PowerEdge C6220 (outfitted with Xeon E5-2697 CPUs). The C6320 also achieved a 45 percent improvement on the SPECint_rate benchmark and up to 28 percent better power efficiency on the Spec_Power benchmark.

The PowerEdge C6320 employs a “4in2U” design, meaning it has four independent server nodes in a 2U chassis, which offers a density that exceeds that of traditional rack servers, and is twice as dense as a 1U server, according to the company. “It also provides an interesting and unique balance of memory and storage and connectivity options,” Payne noted.

In the HPC sphere, Dells sees the C4130 as addressing pain points like scarce datacenter space, delivering double the density from a traditional rack server, allowing customers to scale more compute nodes per rack. Many of the datacenters in the HPC space have been engineered to take advantage of that density, meaning that they have the requisite power and cooling infrastructure in place, said Payne.

Beyond addressing the density, Dell recognizes that the HPC space is changing to become more heterogeneous, and there is burgeoning demand for acceleration technology coming from an ever-widening user group that includes technical computing, scientific research, financial services, oil and gas exploration, and medical imaging.

Customers with problems from these and other domains that lend themselves to being solved more efficiently by GPGPUs and Xeon Phi have the option to pair the PowerEdge C6320 with the accelerator-optimized PowerEdge C4130. Introduced back in Q4 of 2014, the PowerEdge C4130 is a 1U, 2-socket server capable of supporting up to four full-powered GPUs or Xeon Phis.

Dell says its PowerEdge C4130 offers 33 percent better GPU/accelerator density than its closest competitors and 400 percent more PCIe GPU/accelerators per processor per rack than a comparable HP system. A single 1U server delivers 7.2 teraflops and has a performance/watt ratio of up to 4.17 gigaflops per watt.

Dell works closely with the major coprocessor suppliers to align roadmaps and ensure that future developments can be deployed in a timely manner. Currently, the C4130 supports NVIDIA’s Tesla K40 and K80 parts; Intel Phi 7120P, 5110P and 3120P SKUs; and AMD’s Firepro line, including the S9150 and S9100 graphics cards.

Advanced seismic data processing is one of the segments benefiting from accelerator technology. Dell has already scored a win in this market by delivering a combination of the 4in2U form factor and the C4130 server to a customer in the undersea oil and gas space. The unnamed business was able to double compute capacity with 50 percent fewer servers, supporting new proprietary analytics, according to Dell.

Dell’s marquis customer in the academic space is the University of California San Diego, which relied on the new PowerEdge C-series for its Comet cluster. The new petascale supercomputer has been described as “supercomputing for the 99 percent” because it will serve the large number of researchers who don’t have the resources to build their own cluster. Deployed by the San Diego Supercomputer Center (SDSC), Comet leverages 27 racks of PowerEdge C6320, totaling 1,944 nodes or 46,656 cores, a five-fold increase in compute capacity compared with SDSC’s previous system.

Payne noted that SDSC was able to get this cluster powered up and starting to run test workloads in under two weeks, months ahead of Dell’s general availability, which begins next month. Payne pointed to the packaging of the platform as a key enabler. “Instead of racking up four discrete rack servers, having those in a single chassis simplifies that process and can help with the speed of deployment,” he said.

“Our goal is to democratize technology and help the [HPC] industry move forward to drive innovations and [discovery],” he stated. “The way we can do that is by driving standardization and by bringing down the marginal cost of compute – to increase their productivity and also engage with them to understand the nuances and challenges that they have and adapt to those. In the case of San Diego Supercomputing Center, they had a timeline that didn’t necessarily line up with our product general release timeline and we found a way to adapt and respond to their timing needs to fulfill the demand for this latest platform.”

Payne added that Dell is opening up market opportunities beyond high-performance computing. The PowerEdge C6320 along with its embedded management software will be used as a host platform for hyper-converged systems such as Dell Engineered Solutions for VMware EVO: RAIL and Dell’s XC Series of Web-scale Converged Appliances.

By targeting the hyper-converged market, Dell was able to design in a new capability in this product class, a management capability called iDRAC8 with Lifecycle Controller. The tool allows customers to rapidly deploy, monitor and update their infrastructure layer. Larger high-performance cluster users may have the means to build their own tools and capabilities. For everyone else, Dell is making this technology available in its PowerEdge C-Series line. Prior to that it had only been available in the mainstream PowerEdge lineup. For those that don’t need this capability, Dell can still deliver the baseline capabilities without the added cost or complexity burden.

“We are seeing more applications of high-performance computing in mainstream industry, outside the domain of traditional national labs, traditional universities,” said Payne, addressing the symbiosis that is occurring at the interplay of HPC, enterprise and big data. “Going into R&D departments, in oil and gas and other segments that are building out big systems, you see some big data problems being treated very similarly to the way high-performance computing problems are solved.

“You have to think about the skill set and the staff in the IT department that is responsible for deploying and administering this infrastructure, and many times that staff is hosting and supporting a diverse set of workloads for the company – from email to database and now high-performance computing as well as some Web technologies. These folks were trained and accustomed to using server OEM tools to manage the infrastructure and they rely on those versus building their own, now we have extended and given them something that they are familiar with that makes it easier for them to take on a high-performance computing project.”

The new server starts at roughly $16,600 and includes the chassis and four C6320 nodes (2x Xeon E5-2603 v3 CPUs, 2x8GB DDR4 memory, 1×2.5-inch 7200rpm 250 GB SATA, iDRAC8 Express, and 3-year warranty). More details, including networking options, are available on this product page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire