Filippo Mantovani on What’s Next for Mont-Blanc and ARM

By John Russell

July 6, 2015

Firing up the Mont-Blanc prototype in mid-June at the Barcelona Supercomputing Center (BSC) was a significant milestone in the European effort to base HPC systems on energy efficient architecture. Mont-Blanc program coordinator Filippo Mantovani was quoted in the release announcing the prototype saying, “Now the challenge starts because with this platform we can foresee how inexpensive technologies from the mobile market can be leveraged for traditional scientific high-performance workloads.”

Begun in 2011, the Mont-Blanc Project is European effort intended to explore new ways to achieve energy efficient architecture for supercomputing (See the 2013 Mont-Blanc paper, Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?”). Recently, the project received a three extension to further develop the OmpSs parallel programming model to automatically exploit multiple cluster nodes, transparent application check pointing for fault tolerance, support for ARMv8 64-bit processors, and the initial design of the Mont-Blanc exascale architecture.

The prototype installed in the Torre Girona chapel is made up of a total of two racks containing 8 standard BullX chassis, 72 compute blades fitting 1080 compute cards, for a total of 2160 CPUs and 1080 GPUs. The heterogeneous architecture of the Mont-Blanc prototype takes advantage of computing elements (CPUs and GPUs) developed by ARM and integrated by BULL under the design guidance of all Mont-Blanc partners.

This use of the ARM architecture is an early demonstration that it may have applicability at the high end of computing. HPCwire talked with Mantovani about some of the challenges and promise that lie ahead.

What further enhancements to the ARM architecture are needed to maintain progress towards higher performance and what changes do you expect over the next few years?

It depends which ARM processors are we looking at. Enhancements of mobile System on Chips (SoCs) are driven by big producers of mobile devices (Apple, Samsung, Huawei, etc.). From this market we will see surprisingly good and increasingly powerful SoCs, but I consider unlikely that one of them will be integrated as-is in a high-end HPC system, unless some of these big players want to enter HPC market. Due to its cost effectiveness, I [still] consider [that] mobile technology is extremely interesting for compute intensive embedded applications as well as small labs and companies looking for cheap/mobile/easy scientific computation, not necessarily in the HPC area.

If we are looking at ARM processors in the server market, then the things are slightly different. The ARM-based chips for servers, in fact, seem to evolve fast and [are becoming] more popular (X-Gene, Cavium ThunderX). Strangely enough, I consider it more urgent to have reliable and unified software support for the ARM platforms appearing on the market, than adding specific features to the silicon. This support would allow ARM technology to be “better socially accepted” within the HPC community. In this sense, Mont-Blanc is going to contribute with this system software stack and programming model, but in terms of compilers a strong contribution from IP designers and SoC producers is [still] required.

What are the missing or weaker parts of the HPC ecosystem required to support continued progress of the ARM-based architecture approach? How are those pieces likely to be developed or strengthened?

Decoupling the production of HPC solutions among IP providers, SoC producers and system integrators can increase competitiveness with benefits for the diversification of solutions and prices; but it can also drive to fragmentation. HPC system integrators are mostly conservative: they are definitely not used to working with mobile technology and also ARM-based server solutions are still not 100% in the production lines of big HPC players. We saw some interesting movement during last SC in New Orleans and I really hope to see even more activity in this direction soon at ISC in Frankfurt.

I think that the real difference could be done now by a good, large, stable and most importantly open-source software support to the ARM-architecture, especially for HPC. I am thinking of compilers, support for hardware counters, parallel debuggers, performance analysis tools, etc. but also programming models that can support the proliferation of threads, the heterogeneity and the different ARMv8 implementations appearing on the market. In this sense, Mont-Blanc is doing a huge effort porting and promoting not only the development tools, but also the OmpSs programming model.

Given the prospect of reduced cost – power and hardware – do you expect ARM-based HPC to further ‘democratize’ HPC and spur adoption by industry sectors and smaller companies previously unable to afford advanced compute resources?

HPC remains mostly an “elite” market. I think however that there are several companies and small labs that have HPC-like problems, looking for accessible compute solutions. In this sense, yes, I believe that ARM-based scientific computation has a great potential. You ask for adopters? I do not have a crystal ball, but I see automotive as a potential growing market. Another field that could take advantage of cost-effective solutions could be personalized medicine. As I said, I see the potential, but I do not know how fast each of these communities reacts to new technologies appearing on the market.

Maybe less directly profitable, but I think we should not ignore the educational impact of parallel ARM-based platforms. Parallela is a worldwide example, but I think that also the fact that a team of six students will take part to the “Student Cluster Competition” at ISC’15 for the first time in the history of the contest with an ARM-based cluster (part of the Mont-Blanc prototype) must to be taken into account. Parallel, accessible and powerful platforms will help new generation of students to grow from day-zero thinking in parallel and taking into account power limitations.

What do you see as the most significant technical problems the Mont-Blanc project must solve now to achieve the next level of performance. Will new technologies be needed to solve some of these issues?

“I think that we can still extract a significant amount of information from our “large” prototype: performance evaluation at level of compute node, at system level, at level of applications, at level of fault tolerance, at level of energy to solution and at level of programmability. We will continue studying on our unique platform, this is sure.

We will approach next level of performance exploring ARM 64-bit instruction set, mostly with platforms available on both markets, server and mobile. On the software side we will continue the exploration using a larger and more complete set of performance analysis tools and boosting our task based programming model OmpSs.”

Considering the hurdles ahead, do you think an exascale system based the ARM/GPU architecture will be built and roughly when do you think we might expect it? Will we ever see a system such as this in the Top500?

“In general, for classical HPC, I consider [the] exascale target still too blurry for giving a clear prediction. Even less, unfortunately, can I foresee concerning ARM/GPU based solutions. For sure the exascale race is wider than simply finding the right technology for floating point computations: it involves memory technology, interconnection network, distributed I/O, fault tolerance and many other hardware and software aspects. In this wider approach to next generation HPC systems, I consider ARM as one of the players with great potential.”

What were the important lessons learned from the End-User Group – Rolls Royce, for example – and how will they inform Mont-Blanc development going forward? Can you identify specific issues that will need to be addressed?

The End-User Group (EUG) is an extremely valuable dissemination tool for the project, but most importantly a virtual gate for letting companies entering the development of the project. The fixed appointments are a yearly meeting with the end-users, plus the training that the project opens to the partners and to the EUG as well.

You mentioned Rolls Royce: we had very fruitful interaction during the first year of collaboration, so we decided to invite a representative to show Rolls Royce work on one of the Mont-Blanc mini-cluster at the satellite event of the PRACEdays in Dublin. The title of the workshop was emblematic, “Enabling Exascale in Europe for Industry”, and we really wanted to leave space to one of our end-users, to understand the tests performed and listen at the requirements.

I think it has been a really productive interaction and I hope that from now on, with 1000 nodes of the Mont-Blanc prototype up and running, this can evolve further, involving several other companies interested in testing the Mont-Blanc platforms.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This