Filippo Mantovani on What’s Next for Mont-Blanc and ARM

By John Russell

July 6, 2015

Firing up the Mont-Blanc prototype in mid-June at the Barcelona Supercomputing Center (BSC) was a significant milestone in the European effort to base HPC systems on energy efficient architecture. Mont-Blanc program coordinator Filippo Mantovani was quoted in the release announcing the prototype saying, “Now the challenge starts because with this platform we can foresee how inexpensive technologies from the mobile market can be leveraged for traditional scientific high-performance workloads.”

Begun in 2011, the Mont-Blanc Project is European effort intended to explore new ways to achieve energy efficient architecture for supercomputing (See the 2013 Mont-Blanc paper, Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?”). Recently, the project received a three extension to further develop the OmpSs parallel programming model to automatically exploit multiple cluster nodes, transparent application check pointing for fault tolerance, support for ARMv8 64-bit processors, and the initial design of the Mont-Blanc exascale architecture.

The prototype installed in the Torre Girona chapel is made up of a total of two racks containing 8 standard BullX chassis, 72 compute blades fitting 1080 compute cards, for a total of 2160 CPUs and 1080 GPUs. The heterogeneous architecture of the Mont-Blanc prototype takes advantage of computing elements (CPUs and GPUs) developed by ARM and integrated by BULL under the design guidance of all Mont-Blanc partners.

This use of the ARM architecture is an early demonstration that it may have applicability at the high end of computing. HPCwire talked with Mantovani about some of the challenges and promise that lie ahead.

What further enhancements to the ARM architecture are needed to maintain progress towards higher performance and what changes do you expect over the next few years?

It depends which ARM processors are we looking at. Enhancements of mobile System on Chips (SoCs) are driven by big producers of mobile devices (Apple, Samsung, Huawei, etc.). From this market we will see surprisingly good and increasingly powerful SoCs, but I consider unlikely that one of them will be integrated as-is in a high-end HPC system, unless some of these big players want to enter HPC market. Due to its cost effectiveness, I [still] consider [that] mobile technology is extremely interesting for compute intensive embedded applications as well as small labs and companies looking for cheap/mobile/easy scientific computation, not necessarily in the HPC area.

If we are looking at ARM processors in the server market, then the things are slightly different. The ARM-based chips for servers, in fact, seem to evolve fast and [are becoming] more popular (X-Gene, Cavium ThunderX). Strangely enough, I consider it more urgent to have reliable and unified software support for the ARM platforms appearing on the market, than adding specific features to the silicon. This support would allow ARM technology to be “better socially accepted” within the HPC community. In this sense, Mont-Blanc is going to contribute with this system software stack and programming model, but in terms of compilers a strong contribution from IP designers and SoC producers is [still] required.

What are the missing or weaker parts of the HPC ecosystem required to support continued progress of the ARM-based architecture approach? How are those pieces likely to be developed or strengthened?

Decoupling the production of HPC solutions among IP providers, SoC producers and system integrators can increase competitiveness with benefits for the diversification of solutions and prices; but it can also drive to fragmentation. HPC system integrators are mostly conservative: they are definitely not used to working with mobile technology and also ARM-based server solutions are still not 100% in the production lines of big HPC players. We saw some interesting movement during last SC in New Orleans and I really hope to see even more activity in this direction soon at ISC in Frankfurt.

I think that the real difference could be done now by a good, large, stable and most importantly open-source software support to the ARM-architecture, especially for HPC. I am thinking of compilers, support for hardware counters, parallel debuggers, performance analysis tools, etc. but also programming models that can support the proliferation of threads, the heterogeneity and the different ARMv8 implementations appearing on the market. In this sense, Mont-Blanc is doing a huge effort porting and promoting not only the development tools, but also the OmpSs programming model.

Given the prospect of reduced cost – power and hardware – do you expect ARM-based HPC to further ‘democratize’ HPC and spur adoption by industry sectors and smaller companies previously unable to afford advanced compute resources?

HPC remains mostly an “elite” market. I think however that there are several companies and small labs that have HPC-like problems, looking for accessible compute solutions. In this sense, yes, I believe that ARM-based scientific computation has a great potential. You ask for adopters? I do not have a crystal ball, but I see automotive as a potential growing market. Another field that could take advantage of cost-effective solutions could be personalized medicine. As I said, I see the potential, but I do not know how fast each of these communities reacts to new technologies appearing on the market.

Maybe less directly profitable, but I think we should not ignore the educational impact of parallel ARM-based platforms. Parallela is a worldwide example, but I think that also the fact that a team of six students will take part to the “Student Cluster Competition” at ISC’15 for the first time in the history of the contest with an ARM-based cluster (part of the Mont-Blanc prototype) must to be taken into account. Parallel, accessible and powerful platforms will help new generation of students to grow from day-zero thinking in parallel and taking into account power limitations.

What do you see as the most significant technical problems the Mont-Blanc project must solve now to achieve the next level of performance. Will new technologies be needed to solve some of these issues?

“I think that we can still extract a significant amount of information from our “large” prototype: performance evaluation at level of compute node, at system level, at level of applications, at level of fault tolerance, at level of energy to solution and at level of programmability. We will continue studying on our unique platform, this is sure.

We will approach next level of performance exploring ARM 64-bit instruction set, mostly with platforms available on both markets, server and mobile. On the software side we will continue the exploration using a larger and more complete set of performance analysis tools and boosting our task based programming model OmpSs.”

Considering the hurdles ahead, do you think an exascale system based the ARM/GPU architecture will be built and roughly when do you think we might expect it? Will we ever see a system such as this in the Top500?

“In general, for classical HPC, I consider [the] exascale target still too blurry for giving a clear prediction. Even less, unfortunately, can I foresee concerning ARM/GPU based solutions. For sure the exascale race is wider than simply finding the right technology for floating point computations: it involves memory technology, interconnection network, distributed I/O, fault tolerance and many other hardware and software aspects. In this wider approach to next generation HPC systems, I consider ARM as one of the players with great potential.”

What were the important lessons learned from the End-User Group – Rolls Royce, for example – and how will they inform Mont-Blanc development going forward? Can you identify specific issues that will need to be addressed?

The End-User Group (EUG) is an extremely valuable dissemination tool for the project, but most importantly a virtual gate for letting companies entering the development of the project. The fixed appointments are a yearly meeting with the end-users, plus the training that the project opens to the partners and to the EUG as well.

You mentioned Rolls Royce: we had very fruitful interaction during the first year of collaboration, so we decided to invite a representative to show Rolls Royce work on one of the Mont-Blanc mini-cluster at the satellite event of the PRACEdays in Dublin. The title of the workshop was emblematic, “Enabling Exascale in Europe for Industry”, and we really wanted to leave space to one of our end-users, to understand the tests performed and listen at the requirements.

I think it has been a really productive interaction and I hope that from now on, with 1000 nodes of the Mont-Blanc prototype up and running, this can evolve further, involving several other companies interested in testing the Mont-Blanc platforms.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This