Digital Prototyping a Mercedes

By John Russell

July 14, 2015

ISC 2015’s emphasis on HPC use in industry was reflected in the choice of Monday’s opening keynote speaker, Jürgen Kohler, senior manager, NVH (noise, vibration, and harshness) CAE & Vehicle Concepts, Mercedes-Benz Cars Development. Kohler presented a fascinating overview of the evolution of the auto industry’s use of HPC-based modeling and simulation. (Did you know simulating road noise on American roads is one of the toughest challenges? The surfaces are rougher than elsewhere, said Kohler.)

“I’m not an HPC guy, not an expert who deals all day with exascale or new chip architectures. I’m an engineer developing fascinating cars with the help of modern HPC-based CAE tools. Our goal is that these cars are as safe and as comfortable and as efficient as possible,” Kohler told the ISC audience.

In the rarified air of HPC it’s sometimes forgotten that technical computing has a concrete role to play in industry. The auto industry has long been a poster child for its effective use of modeling and simulation to improve performance, increase safety, and achieve cost savings and remarkable manufacturing efficiencies.

Begun in the 1970s, early modeling and simulation of the Mercedes fleet was relatively crude (hundreds to a few thousands of elements). The results were taken as rough guides and physical testing regimes were remained the gold standard relied upon. Today the situation is nearly reversed. Structural integrity, airflow, in-car acoustics, crash dynamics, passenger safety are just a few of the many variables simulated prior to manufacturing.

In his talk, Kohler loosely summarized the development of M&S at Daimler and reviewed a few examples of how it is used.

Daimler’s pursuit of a digital prototype program started about 15 years ago he said and has since become standard operating procedure. Today there are more than 30 digital prototype projects underway, and the computational requirements necessary for effective simulation have grown steadily with the sophistication of the models. Besides assisting in the design and manufacture of beautiful cars, the increased use of M&S has dragged along familiar HPC headaches (bandwidth problems, IO and latency roadblocks, data management and storage challenges, etc.).

“Beside expanding our product line (new models), we are facing many new technologies like dealing with electric drives, dealing with hybrids, and still improving traditional combustion engines. Maintain sustained mobility through networks [is] another – you can now know if your son or daughter is driving the car when they shouldn’t be. Consider the fascinating field of autonomous driving. We already have [that] available in the new S Class or E Class with autonomous driving in a traffic jam up to a speed of 30 km/h,” said Kohler.

Without digital modeling and simulation it would be virtually impossible to design and efficiently manufacture modern cars and trucks. Moreover investments in required plants and manufacturing equipment are typically made two years ahead of market launch and are based on the digital prototype.

“These results have to be absolutely reliable. It’s very expensive to have to change expensive tooling [after the fact],” he said. “We need competence in software and hardware interacting together modeling especially in transferring our ideas and measure into the product. We have usually local clusters with specific applications that run hundreds of jobs every day.”

While not revealing much detail about the Daimler’s specific HPC infrastructure, Kohler presented a handful of M&S examples including collision safety modeling, passenger safety, and ride quality. He also showed a short video:

“In [about] 1970 when the film was made and we had started working on these methods and it took quite a long time before method got established. This is one of our first [crash] simulation models for stiffness with 1119 elements,” he said. Simulating crashes and NVH in the new S Class uses models with millions of elements and some aerodynamics applications with 80 million cells.”

Kohler then showed a video of modern simulation of a crash between an S Class car and Smart Car (made by Daimler). “Our goal is that both cars are very safe. The S Class is a big car, weighing more than 2000kg and has a long crumple zone in the front. The Smart Car weighs about half as much and has a very stiff cell, which protects the passengers, along with an elaborate restraint systems. The simulation is of 50km/h collision run on 490 cpus for about 30 hours (8 million elements.) The mesh size is critical.”

Today, Daimler simulates about 70,000 crashes year in addition to conducting 700 physical crashes per year. “You see that’s a lot of work. Turnaround time began at five days and today it’s a half–day or one day for bigger problems, said Kohler.

These simulations generate an avalanche of data. “If you do 70,000 crash simulations a year and you store all the data which is computed, it would be about 40 exabytes. We don’t. Instead we temporarily store about 6 petabytes and reduce that down and store only 400 terabytes a year. I hear a lot about big data and it’s an important topic but not as important for us in simulation. There are some big data projects in our company, but they are quality and sales,” he said.

Not surprisingly passenger safety is an area of emphasis and an area where simulation has distinct advantages. “A traditional dummy is [essentially] an instrument for measuring defined forces and simulates a crash. The problem is the bones are made of steel in order to measure forces. If you take a human arm or leg it is so different and so much lighter.

“We use human models. It’s very important to have valid human kinematics to evaluate injury or risk. We are able to make models of ten different body shapes, about 400k elements in the model, and the total cpu time varies from 1 hour up to 25 hours,” said Kohler.

NVH is another important measure as it directly affects comfort in the car. Kohler said these models can get quite large and bog down processing time. Engine excitation, cabin vibration, motor housing vibrations, and stiffness of rubber bearings are just a few of the aspects measured. “You can have a very small excitation of the chassis and you wouldn’t see it without simulations,” said Kohler. Airflow, of course, is important.

“At higher frequencies you have fluctuating turbulence, and street noise. [Simulating] an S Class with a mesh size here with 150 million cells on 500 cores takes two weeks. There’s still potential for improvement,” Kohler said.

The ballooning of model sizes has been challenging. It was necessary to adopt parallelization techniques to get runtimes down. Adoption of HPC software, such as Automated MultiLevel Substructuring simulation and optimizing the system for it has helped cut processing times.

“Today we are able to simulate very detailed models. As an example, the current model of the S Class with 25 million degrees of freedom running on 6000 nodes would take 200 hours for computer; with AMLS solver it takes less than two hours,” said Kohler.

Clearly HPC technology and techniques, said Kohler, have made a major impact. “HPC gives us a deeper understanding of a system and helps reduce the need for prototypes and tests, and shortens development. He is quick to add M&S alone isn’t enough. Physical testing is required and indeed Daimler has a wind tunnel with a 28m2 nozzle.

Most of us take our cars for granted but the truth is they are in many ways technological marvels and remarkably reliable given the wide range of conditions (weather, roads, collisions, temperature swings) in which they operate and the years of service we expect from them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire