Digital Prototyping a Mercedes

By John Russell

July 14, 2015

ISC 2015’s emphasis on HPC use in industry was reflected in the choice of Monday’s opening keynote speaker, Jürgen Kohler, senior manager, NVH (noise, vibration, and harshness) CAE & Vehicle Concepts, Mercedes-Benz Cars Development. Kohler presented a fascinating overview of the evolution of the auto industry’s use of HPC-based modeling and simulation. (Did you know simulating road noise on American roads is one of the toughest challenges? The surfaces are rougher than elsewhere, said Kohler.)

“I’m not an HPC guy, not an expert who deals all day with exascale or new chip architectures. I’m an engineer developing fascinating cars with the help of modern HPC-based CAE tools. Our goal is that these cars are as safe and as comfortable and as efficient as possible,” Kohler told the ISC audience.

In the rarified air of HPC it’s sometimes forgotten that technical computing has a concrete role to play in industry. The auto industry has long been a poster child for its effective use of modeling and simulation to improve performance, increase safety, and achieve cost savings and remarkable manufacturing efficiencies.

Begun in the 1970s, early modeling and simulation of the Mercedes fleet was relatively crude (hundreds to a few thousands of elements). The results were taken as rough guides and physical testing regimes were remained the gold standard relied upon. Today the situation is nearly reversed. Structural integrity, airflow, in-car acoustics, crash dynamics, passenger safety are just a few of the many variables simulated prior to manufacturing.

In his talk, Kohler loosely summarized the development of M&S at Daimler and reviewed a few examples of how it is used.

Daimler’s pursuit of a digital prototype program started about 15 years ago he said and has since become standard operating procedure. Today there are more than 30 digital prototype projects underway, and the computational requirements necessary for effective simulation have grown steadily with the sophistication of the models. Besides assisting in the design and manufacture of beautiful cars, the increased use of M&S has dragged along familiar HPC headaches (bandwidth problems, IO and latency roadblocks, data management and storage challenges, etc.).

“Beside expanding our product line (new models), we are facing many new technologies like dealing with electric drives, dealing with hybrids, and still improving traditional combustion engines. Maintain sustained mobility through networks [is] another – you can now know if your son or daughter is driving the car when they shouldn’t be. Consider the fascinating field of autonomous driving. We already have [that] available in the new S Class or E Class with autonomous driving in a traffic jam up to a speed of 30 km/h,” said Kohler.

Without digital modeling and simulation it would be virtually impossible to design and efficiently manufacture modern cars and trucks. Moreover investments in required plants and manufacturing equipment are typically made two years ahead of market launch and are based on the digital prototype.

“These results have to be absolutely reliable. It’s very expensive to have to change expensive tooling [after the fact],” he said. “We need competence in software and hardware interacting together modeling especially in transferring our ideas and measure into the product. We have usually local clusters with specific applications that run hundreds of jobs every day.”

While not revealing much detail about the Daimler’s specific HPC infrastructure, Kohler presented a handful of M&S examples including collision safety modeling, passenger safety, and ride quality. He also showed a short video:

“In [about] 1970 when the film was made and we had started working on these methods and it took quite a long time before method got established. This is one of our first [crash] simulation models for stiffness with 1119 elements,” he said. Simulating crashes and NVH in the new S Class uses models with millions of elements and some aerodynamics applications with 80 million cells.”

Kohler then showed a video of modern simulation of a crash between an S Class car and Smart Car (made by Daimler). “Our goal is that both cars are very safe. The S Class is a big car, weighing more than 2000kg and has a long crumple zone in the front. The Smart Car weighs about half as much and has a very stiff cell, which protects the passengers, along with an elaborate restraint systems. The simulation is of 50km/h collision run on 490 cpus for about 30 hours (8 million elements.) The mesh size is critical.”

Today, Daimler simulates about 70,000 crashes year in addition to conducting 700 physical crashes per year. “You see that’s a lot of work. Turnaround time began at five days and today it’s a half–day or one day for bigger problems, said Kohler.

These simulations generate an avalanche of data. “If you do 70,000 crash simulations a year and you store all the data which is computed, it would be about 40 exabytes. We don’t. Instead we temporarily store about 6 petabytes and reduce that down and store only 400 terabytes a year. I hear a lot about big data and it’s an important topic but not as important for us in simulation. There are some big data projects in our company, but they are quality and sales,” he said.

Not surprisingly passenger safety is an area of emphasis and an area where simulation has distinct advantages. “A traditional dummy is [essentially] an instrument for measuring defined forces and simulates a crash. The problem is the bones are made of steel in order to measure forces. If you take a human arm or leg it is so different and so much lighter.

“We use human models. It’s very important to have valid human kinematics to evaluate injury or risk. We are able to make models of ten different body shapes, about 400k elements in the model, and the total cpu time varies from 1 hour up to 25 hours,” said Kohler.

NVH is another important measure as it directly affects comfort in the car. Kohler said these models can get quite large and bog down processing time. Engine excitation, cabin vibration, motor housing vibrations, and stiffness of rubber bearings are just a few of the aspects measured. “You can have a very small excitation of the chassis and you wouldn’t see it without simulations,” said Kohler. Airflow, of course, is important.

“At higher frequencies you have fluctuating turbulence, and street noise. [Simulating] an S Class with a mesh size here with 150 million cells on 500 cores takes two weeks. There’s still potential for improvement,” Kohler said.

The ballooning of model sizes has been challenging. It was necessary to adopt parallelization techniques to get runtimes down. Adoption of HPC software, such as Automated MultiLevel Substructuring simulation and optimizing the system for it has helped cut processing times.

“Today we are able to simulate very detailed models. As an example, the current model of the S Class with 25 million degrees of freedom running on 6000 nodes would take 200 hours for computer; with AMLS solver it takes less than two hours,” said Kohler.

Clearly HPC technology and techniques, said Kohler, have made a major impact. “HPC gives us a deeper understanding of a system and helps reduce the need for prototypes and tests, and shortens development. He is quick to add M&S alone isn’t enough. Physical testing is required and indeed Daimler has a wind tunnel with a 28m2 nozzle.

Most of us take our cars for granted but the truth is they are in many ways technological marvels and remarkably reliable given the wide range of conditions (weather, roads, collisions, temperature swings) in which they operate and the years of service we expect from them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and h Read more…

By Doug Black

AWS to Offer Nvidia’s T4 GPUs for AI Inferencing

March 19, 2019

The AI inference market is booming, prompting well-known hyperscaler and Nvidia partner Amazon Web Services to offer a new cloud instance that addresses the growing cost of scaling inference. The new “G4” instances... Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Research Projects Agency jointly announced a “Real Time Machine Learning” project on March 15 soliciting industry proposals for “foundational breakthroughs” in hardware required to “build systems that respond and adapt in real time.” Read more…

By George Leopold

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This