Digital Prototyping a Mercedes

By John Russell

July 14, 2015

ISC 2015’s emphasis on HPC use in industry was reflected in the choice of Monday’s opening keynote speaker, Jürgen Kohler, senior manager, NVH (noise, vibration, and harshness) CAE & Vehicle Concepts, Mercedes-Benz Cars Development. Kohler presented a fascinating overview of the evolution of the auto industry’s use of HPC-based modeling and simulation. (Did you know simulating road noise on American roads is one of the toughest challenges? The surfaces are rougher than elsewhere, said Kohler.)

“I’m not an HPC guy, not an expert who deals all day with exascale or new chip architectures. I’m an engineer developing fascinating cars with the help of modern HPC-based CAE tools. Our goal is that these cars are as safe and as comfortable and as efficient as possible,” Kohler told the ISC audience.

In the rarified air of HPC it’s sometimes forgotten that technical computing has a concrete role to play in industry. The auto industry has long been a poster child for its effective use of modeling and simulation to improve performance, increase safety, and achieve cost savings and remarkable manufacturing efficiencies.

Begun in the 1970s, early modeling and simulation of the Mercedes fleet was relatively crude (hundreds to a few thousands of elements). The results were taken as rough guides and physical testing regimes were remained the gold standard relied upon. Today the situation is nearly reversed. Structural integrity, airflow, in-car acoustics, crash dynamics, passenger safety are just a few of the many variables simulated prior to manufacturing.

In his talk, Kohler loosely summarized the development of M&S at Daimler and reviewed a few examples of how it is used.

Daimler’s pursuit of a digital prototype program started about 15 years ago he said and has since become standard operating procedure. Today there are more than 30 digital prototype projects underway, and the computational requirements necessary for effective simulation have grown steadily with the sophistication of the models. Besides assisting in the design and manufacture of beautiful cars, the increased use of M&S has dragged along familiar HPC headaches (bandwidth problems, IO and latency roadblocks, data management and storage challenges, etc.).

“Beside expanding our product line (new models), we are facing many new technologies like dealing with electric drives, dealing with hybrids, and still improving traditional combustion engines. Maintain sustained mobility through networks [is] another – you can now know if your son or daughter is driving the car when they shouldn’t be. Consider the fascinating field of autonomous driving. We already have [that] available in the new S Class or E Class with autonomous driving in a traffic jam up to a speed of 30 km/h,” said Kohler.

Without digital modeling and simulation it would be virtually impossible to design and efficiently manufacture modern cars and trucks. Moreover investments in required plants and manufacturing equipment are typically made two years ahead of market launch and are based on the digital prototype.

“These results have to be absolutely reliable. It’s very expensive to have to change expensive tooling [after the fact],” he said. “We need competence in software and hardware interacting together modeling especially in transferring our ideas and measure into the product. We have usually local clusters with specific applications that run hundreds of jobs every day.”

While not revealing much detail about the Daimler’s specific HPC infrastructure, Kohler presented a handful of M&S examples including collision safety modeling, passenger safety, and ride quality. He also showed a short video:

“In [about] 1970 when the film was made and we had started working on these methods and it took quite a long time before method got established. This is one of our first [crash] simulation models for stiffness with 1119 elements,” he said. Simulating crashes and NVH in the new S Class uses models with millions of elements and some aerodynamics applications with 80 million cells.”

Kohler then showed a video of modern simulation of a crash between an S Class car and Smart Car (made by Daimler). “Our goal is that both cars are very safe. The S Class is a big car, weighing more than 2000kg and has a long crumple zone in the front. The Smart Car weighs about half as much and has a very stiff cell, which protects the passengers, along with an elaborate restraint systems. The simulation is of 50km/h collision run on 490 cpus for about 30 hours (8 million elements.) The mesh size is critical.”

Today, Daimler simulates about 70,000 crashes year in addition to conducting 700 physical crashes per year. “You see that’s a lot of work. Turnaround time began at five days and today it’s a half–day or one day for bigger problems, said Kohler.

These simulations generate an avalanche of data. “If you do 70,000 crash simulations a year and you store all the data which is computed, it would be about 40 exabytes. We don’t. Instead we temporarily store about 6 petabytes and reduce that down and store only 400 terabytes a year. I hear a lot about big data and it’s an important topic but not as important for us in simulation. There are some big data projects in our company, but they are quality and sales,” he said.

Not surprisingly passenger safety is an area of emphasis and an area where simulation has distinct advantages. “A traditional dummy is [essentially] an instrument for measuring defined forces and simulates a crash. The problem is the bones are made of steel in order to measure forces. If you take a human arm or leg it is so different and so much lighter.

“We use human models. It’s very important to have valid human kinematics to evaluate injury or risk. We are able to make models of ten different body shapes, about 400k elements in the model, and the total cpu time varies from 1 hour up to 25 hours,” said Kohler.

NVH is another important measure as it directly affects comfort in the car. Kohler said these models can get quite large and bog down processing time. Engine excitation, cabin vibration, motor housing vibrations, and stiffness of rubber bearings are just a few of the aspects measured. “You can have a very small excitation of the chassis and you wouldn’t see it without simulations,” said Kohler. Airflow, of course, is important.

“At higher frequencies you have fluctuating turbulence, and street noise. [Simulating] an S Class with a mesh size here with 150 million cells on 500 cores takes two weeks. There’s still potential for improvement,” Kohler said.

The ballooning of model sizes has been challenging. It was necessary to adopt parallelization techniques to get runtimes down. Adoption of HPC software, such as Automated MultiLevel Substructuring simulation and optimizing the system for it has helped cut processing times.

“Today we are able to simulate very detailed models. As an example, the current model of the S Class with 25 million degrees of freedom running on 6000 nodes would take 200 hours for computer; with AMLS solver it takes less than two hours,” said Kohler.

Clearly HPC technology and techniques, said Kohler, have made a major impact. “HPC gives us a deeper understanding of a system and helps reduce the need for prototypes and tests, and shortens development. He is quick to add M&S alone isn’t enough. Physical testing is required and indeed Daimler has a wind tunnel with a 28m2 nozzle.

Most of us take our cars for granted but the truth is they are in many ways technological marvels and remarkably reliable given the wide range of conditions (weather, roads, collisions, temperature swings) in which they operate and the years of service we expect from them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This