Digital Prototyping a Mercedes

By John Russell

July 14, 2015

ISC 2015’s emphasis on HPC use in industry was reflected in the choice of Monday’s opening keynote speaker, Jürgen Kohler, senior manager, NVH (noise, vibration, and harshness) CAE & Vehicle Concepts, Mercedes-Benz Cars Development. Kohler presented a fascinating overview of the evolution of the auto industry’s use of HPC-based modeling and simulation. (Did you know simulating road noise on American roads is one of the toughest challenges? The surfaces are rougher than elsewhere, said Kohler.)

“I’m not an HPC guy, not an expert who deals all day with exascale or new chip architectures. I’m an engineer developing fascinating cars with the help of modern HPC-based CAE tools. Our goal is that these cars are as safe and as comfortable and as efficient as possible,” Kohler told the ISC audience.

In the rarified air of HPC it’s sometimes forgotten that technical computing has a concrete role to play in industry. The auto industry has long been a poster child for its effective use of modeling and simulation to improve performance, increase safety, and achieve cost savings and remarkable manufacturing efficiencies.

Begun in the 1970s, early modeling and simulation of the Mercedes fleet was relatively crude (hundreds to a few thousands of elements). The results were taken as rough guides and physical testing regimes were remained the gold standard relied upon. Today the situation is nearly reversed. Structural integrity, airflow, in-car acoustics, crash dynamics, passenger safety are just a few of the many variables simulated prior to manufacturing.

In his talk, Kohler loosely summarized the development of M&S at Daimler and reviewed a few examples of how it is used.

Daimler’s pursuit of a digital prototype program started about 15 years ago he said and has since become standard operating procedure. Today there are more than 30 digital prototype projects underway, and the computational requirements necessary for effective simulation have grown steadily with the sophistication of the models. Besides assisting in the design and manufacture of beautiful cars, the increased use of M&S has dragged along familiar HPC headaches (bandwidth problems, IO and latency roadblocks, data management and storage challenges, etc.).

“Beside expanding our product line (new models), we are facing many new technologies like dealing with electric drives, dealing with hybrids, and still improving traditional combustion engines. Maintain sustained mobility through networks [is] another – you can now know if your son or daughter is driving the car when they shouldn’t be. Consider the fascinating field of autonomous driving. We already have [that] available in the new S Class or E Class with autonomous driving in a traffic jam up to a speed of 30 km/h,” said Kohler.

Without digital modeling and simulation it would be virtually impossible to design and efficiently manufacture modern cars and trucks. Moreover investments in required plants and manufacturing equipment are typically made two years ahead of market launch and are based on the digital prototype.

“These results have to be absolutely reliable. It’s very expensive to have to change expensive tooling [after the fact],” he said. “We need competence in software and hardware interacting together modeling especially in transferring our ideas and measure into the product. We have usually local clusters with specific applications that run hundreds of jobs every day.”

While not revealing much detail about the Daimler’s specific HPC infrastructure, Kohler presented a handful of M&S examples including collision safety modeling, passenger safety, and ride quality. He also showed a short video:

“In [about] 1970 when the film was made and we had started working on these methods and it took quite a long time before method got established. This is one of our first [crash] simulation models for stiffness with 1119 elements,” he said. Simulating crashes and NVH in the new S Class uses models with millions of elements and some aerodynamics applications with 80 million cells.”

Kohler then showed a video of modern simulation of a crash between an S Class car and Smart Car (made by Daimler). “Our goal is that both cars are very safe. The S Class is a big car, weighing more than 2000kg and has a long crumple zone in the front. The Smart Car weighs about half as much and has a very stiff cell, which protects the passengers, along with an elaborate restraint systems. The simulation is of 50km/h collision run on 490 cpus for about 30 hours (8 million elements.) The mesh size is critical.”

Today, Daimler simulates about 70,000 crashes year in addition to conducting 700 physical crashes per year. “You see that’s a lot of work. Turnaround time began at five days and today it’s a half–day or one day for bigger problems, said Kohler.

These simulations generate an avalanche of data. “If you do 70,000 crash simulations a year and you store all the data which is computed, it would be about 40 exabytes. We don’t. Instead we temporarily store about 6 petabytes and reduce that down and store only 400 terabytes a year. I hear a lot about big data and it’s an important topic but not as important for us in simulation. There are some big data projects in our company, but they are quality and sales,” he said.

Not surprisingly passenger safety is an area of emphasis and an area where simulation has distinct advantages. “A traditional dummy is [essentially] an instrument for measuring defined forces and simulates a crash. The problem is the bones are made of steel in order to measure forces. If you take a human arm or leg it is so different and so much lighter.

“We use human models. It’s very important to have valid human kinematics to evaluate injury or risk. We are able to make models of ten different body shapes, about 400k elements in the model, and the total cpu time varies from 1 hour up to 25 hours,” said Kohler.

NVH is another important measure as it directly affects comfort in the car. Kohler said these models can get quite large and bog down processing time. Engine excitation, cabin vibration, motor housing vibrations, and stiffness of rubber bearings are just a few of the aspects measured. “You can have a very small excitation of the chassis and you wouldn’t see it without simulations,” said Kohler. Airflow, of course, is important.

“At higher frequencies you have fluctuating turbulence, and street noise. [Simulating] an S Class with a mesh size here with 150 million cells on 500 cores takes two weeks. There’s still potential for improvement,” Kohler said.

The ballooning of model sizes has been challenging. It was necessary to adopt parallelization techniques to get runtimes down. Adoption of HPC software, such as Automated MultiLevel Substructuring simulation and optimizing the system for it has helped cut processing times.

“Today we are able to simulate very detailed models. As an example, the current model of the S Class with 25 million degrees of freedom running on 6000 nodes would take 200 hours for computer; with AMLS solver it takes less than two hours,” said Kohler.

Clearly HPC technology and techniques, said Kohler, have made a major impact. “HPC gives us a deeper understanding of a system and helps reduce the need for prototypes and tests, and shortens development. He is quick to add M&S alone isn’t enough. Physical testing is required and indeed Daimler has a wind tunnel with a 28m2 nozzle.

Most of us take our cars for granted but the truth is they are in many ways technological marvels and remarkably reliable given the wide range of conditions (weather, roads, collisions, temperature swings) in which they operate and the years of service we expect from them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This