China Scores Fifth TOP500 Win with Tianhe-2

By Tiffany Trader

July 14, 2015

When China grabbed the TOP500 crown for its Tianhe-2 supercomputer in June 2013 with double the peak FLOPS of the next fastest machine (Titan at Oak Ridge National Laboratory), could anyone have foreseen that the machine would still hold on to the top spot a full two years later? As we can see from the 45th edition of the twice-yearly TOP500 list, which was published Monday in tandem with the 2015 International Supercomputing Conference, not only did Tianhe-2, or “Milky Way-2,” retain its position, the top five systems remain unchanged:

TOP500 list June 2013 or June 2015

And in these last two years, spanning five iterations of the list, there are only two new machines in the top 10: Piz Daint, the Cray XC30 at the Swiss National Supercomputing Centre (CSCS), Switzerland, with 6.27 LINPACK petaflops and Shaheen II, the Cray XC40 installed at King Abdullah University of Science and Technology in Saudi Arabia, with 5.53 LINPACK petaflops coming in at the six and seventh spots respectively, pushing down SuperMUC (IBM/Lenovo, Leibniz Rechenzentrum, Germany, 2.89 petaflops) and Tianhe-1A (National Supercomputing Center in Tianjin, China, 2.56 petaflops).

That was the two-year view. Comparing the June 2015 with the previous list from November, there is only one new addition in the rarefied top 10 zone: Saudi Arabia’s Shaheen II, which pushed out the 3.57 petaflops Cray CS-Storm system installed at an undisclosed US government site.

The degree of stagnation at the top of supercomputing is unprecedented and speaks to the challenges that the upper echelon of high-performance computing is facing, most notably attributed to the limitations of Moore’s law by luminaries such as Berkeley Lab Deputy Director and TOP500 author Horst Simon and many others.

Illustrative of the severity of this slowdown, the TOP500 organizers confirm that the last two years have seen historically low year-over-year performance increases in the overall list, and that’s with the bolstering effect of the very large systems that sit on the top of the list. The current list reflects a combined performance of 363 petaflops for all 500 systems, compared to 309 petaflops six months ago and 274 petaflops one year ago.

Performance development TOP500 June 2015

Further, the performance of the last system on the list (#500) has lagged behind historical trends for the last six years with a marked shift in its performance trajectory. Since 2008, performance of that #500 system is rising 55 percent per year. Contrast that to the annual growth rate of 90 percent seen between 1994 to 2008 in the period of performance scaling that is coming to be recognized as the heyday of Moore’s law.

While the continued standstill is fairly dramatic, it didn’t come as a surprise. Most obviously, given multi-year procurement cycles, the slowdown we are seeing today is a holdover from recession-era investment levels. Perhaps just as significant, however, the major sites that buy these leadership-class systems have been in a holding pattern as they waited to see what technologies and architectures would provide the biggest value for their users and workloads.

In the past, with a strong Moore’s law driving faster, cheaper, more energy-efficient sequential processing advances, typical refresh cycles would center on next-generation CPUs, but with the move to more and more heterogeneity, there are multiple technology cycles to watch, this includes Tesla GPU SKUs from NVIDIA, the Intel MIC line, and the continued evolution of 64-bit ARM. There are also new memory and storage technologies (NVRAM, burst buffers, SSDs, memristors) and next-gen interconnects (NVIDIA’s NVLink, Intel Omni-Path, etc.).

Many of these promised advances are about to come to fruition and the pipelined systems that hinge on them will revive list motility; this should start to happen in the six months to a year. In the US, the ACES and CORAL collaboration efforts are on track to produce five major systems ranging from 30 to 180 petaflops. The Trinity supercomputer is contracted to provide the National Nuclear Security Administration (NNSA) with 40 petaflops of compute power. Installation of the $174 million Cray XC40 machine is scheduled for this summer, but it is unknown if there will be enough lead time to have it up and benchmarked by SC15 and the next iteration of the TOP500 list.

The system will be physically located in Los Alamos at the Nicholas Metropolis Center for Modeling and Simulation and will be managed and operated by Los Alamos National Laboratory and Sandia National Laboratories under the Alliance for Computing at Extreme Scale (ACES) partnership.

Other US systems are expected along the following timeline:

2016: Cori, NERSC (> 30 petaflops)
2017: Summit, ORNL, OLCF (150 petaflops)
2018: Sierra, LLNL, NNSA (150 petaflops)
2018: Aurora, ANL, ALCF (180 petaflops)

Japan and Europe are also ramping up their “exascale-focused” agendas, although most nations have given up the aim of hitting the 2020 timeframe. As Horst Simon has observed, if exascale were going to make the 2020 deadline in the US, the CORAL systems (Summit, Sierra and Aurora) would have had to be installed already, yet they are still two to three years off.

Given China’s long-running FLOPS lead, it was a top contender in the race to break the next 1,000X performance barrier. Tianhe-2 was due to receive an infusion of tens of thousands of Intel Xeon chips that would have expanded it past the 110 petaflops mark until bans put in place by the US government derailed those upgrade plans.

Last August, Intel was asked by the US government to apply for an export license authorizing the shipment to Chinese system maker Inspur, but the application was denied, blocking the chipmaker from assisting with Tianhe-2’s upgrade path. Shortly thereafter, four Chinese supercomputer centers were blacklisted by the US government on the grounds that they were “acting contrary to the national security or foreign policy interests of the United States.”

Many in the industry see this as political posturing and fear the move may backfire, spurring China to accelerate its homegrown chipmaking program. While a completely indigenous machine has long been a goal for the protectionist nation, ready access to US microprocessor technology in combination with the supreme difficulty of chip innovation had a dampening effect. With this critical componentry supply effectively shuttered, China will be forced to redouble its efforts to engineer a completely indigenous supercomputing stack.

In a sign of just how serious China is about building its domestic semiconductor business, albeit on the memory side, the Chinese state-owned chip designer Tsinghua Unigroup Ltd. just made a $23 billion bid for US memory manufacturer, Micron Technology. Analysts say the deal, which would be the largest transfer of its kind, would face intense scrutiny by US officials concerned with the security and anti-trust implications of allowing the last memory chipmaker in the US to be transferred to a state-controlled entity.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire