China Scores Fifth TOP500 Win with Tianhe-2

By Tiffany Trader

July 14, 2015

When China grabbed the TOP500 crown for its Tianhe-2 supercomputer in June 2013 with double the peak FLOPS of the next fastest machine (Titan at Oak Ridge National Laboratory), could anyone have foreseen that the machine would still hold on to the top spot a full two years later? As we can see from the 45th edition of the twice-yearly TOP500 list, which was published Monday in tandem with the 2015 International Supercomputing Conference, not only did Tianhe-2, or “Milky Way-2,” retain its position, the top five systems remain unchanged:

TOP500 list June 2013 or June 2015

And in these last two years, spanning five iterations of the list, there are only two new machines in the top 10: Piz Daint, the Cray XC30 at the Swiss National Supercomputing Centre (CSCS), Switzerland, with 6.27 LINPACK petaflops and Shaheen II, the Cray XC40 installed at King Abdullah University of Science and Technology in Saudi Arabia, with 5.53 LINPACK petaflops coming in at the six and seventh spots respectively, pushing down SuperMUC (IBM/Lenovo, Leibniz Rechenzentrum, Germany, 2.89 petaflops) and Tianhe-1A (National Supercomputing Center in Tianjin, China, 2.56 petaflops).

That was the two-year view. Comparing the June 2015 with the previous list from November, there is only one new addition in the rarefied top 10 zone: Saudi Arabia’s Shaheen II, which pushed out the 3.57 petaflops Cray CS-Storm system installed at an undisclosed US government site.

The degree of stagnation at the top of supercomputing is unprecedented and speaks to the challenges that the upper echelon of high-performance computing is facing, most notably attributed to the limitations of Moore’s law by luminaries such as Berkeley Lab Deputy Director and TOP500 author Horst Simon and many others.

Illustrative of the severity of this slowdown, the TOP500 organizers confirm that the last two years have seen historically low year-over-year performance increases in the overall list, and that’s with the bolstering effect of the very large systems that sit on the top of the list. The current list reflects a combined performance of 363 petaflops for all 500 systems, compared to 309 petaflops six months ago and 274 petaflops one year ago.

Performance development TOP500 June 2015

Further, the performance of the last system on the list (#500) has lagged behind historical trends for the last six years with a marked shift in its performance trajectory. Since 2008, performance of that #500 system is rising 55 percent per year. Contrast that to the annual growth rate of 90 percent seen between 1994 to 2008 in the period of performance scaling that is coming to be recognized as the heyday of Moore’s law.

While the continued standstill is fairly dramatic, it didn’t come as a surprise. Most obviously, given multi-year procurement cycles, the slowdown we are seeing today is a holdover from recession-era investment levels. Perhaps just as significant, however, the major sites that buy these leadership-class systems have been in a holding pattern as they waited to see what technologies and architectures would provide the biggest value for their users and workloads.

In the past, with a strong Moore’s law driving faster, cheaper, more energy-efficient sequential processing advances, typical refresh cycles would center on next-generation CPUs, but with the move to more and more heterogeneity, there are multiple technology cycles to watch, this includes Tesla GPU SKUs from NVIDIA, the Intel MIC line, and the continued evolution of 64-bit ARM. There are also new memory and storage technologies (NVRAM, burst buffers, SSDs, memristors) and next-gen interconnects (NVIDIA’s NVLink, Intel Omni-Path, etc.).

Many of these promised advances are about to come to fruition and the pipelined systems that hinge on them will revive list motility; this should start to happen in the six months to a year. In the US, the ACES and CORAL collaboration efforts are on track to produce five major systems ranging from 30 to 180 petaflops. The Trinity supercomputer is contracted to provide the National Nuclear Security Administration (NNSA) with 40 petaflops of compute power. Installation of the $174 million Cray XC40 machine is scheduled for this summer, but it is unknown if there will be enough lead time to have it up and benchmarked by SC15 and the next iteration of the TOP500 list.

The system will be physically located in Los Alamos at the Nicholas Metropolis Center for Modeling and Simulation and will be managed and operated by Los Alamos National Laboratory and Sandia National Laboratories under the Alliance for Computing at Extreme Scale (ACES) partnership.

Other US systems are expected along the following timeline:

2016: Cori, NERSC (> 30 petaflops)
2017: Summit, ORNL, OLCF (150 petaflops)
2018: Sierra, LLNL, NNSA (150 petaflops)
2018: Aurora, ANL, ALCF (180 petaflops)

Japan and Europe are also ramping up their “exascale-focused” agendas, although most nations have given up the aim of hitting the 2020 timeframe. As Horst Simon has observed, if exascale were going to make the 2020 deadline in the US, the CORAL systems (Summit, Sierra and Aurora) would have had to be installed already, yet they are still two to three years off.

Given China’s long-running FLOPS lead, it was a top contender in the race to break the next 1,000X performance barrier. Tianhe-2 was due to receive an infusion of tens of thousands of Intel Xeon chips that would have expanded it past the 110 petaflops mark until bans put in place by the US government derailed those upgrade plans.

Last August, Intel was asked by the US government to apply for an export license authorizing the shipment to Chinese system maker Inspur, but the application was denied, blocking the chipmaker from assisting with Tianhe-2’s upgrade path. Shortly thereafter, four Chinese supercomputer centers were blacklisted by the US government on the grounds that they were “acting contrary to the national security or foreign policy interests of the United States.”

Many in the industry see this as political posturing and fear the move may backfire, spurring China to accelerate its homegrown chipmaking program. While a completely indigenous machine has long been a goal for the protectionist nation, ready access to US microprocessor technology in combination with the supreme difficulty of chip innovation had a dampening effect. With this critical componentry supply effectively shuttered, China will be forced to redouble its efforts to engineer a completely indigenous supercomputing stack.

In a sign of just how serious China is about building its domestic semiconductor business, albeit on the memory side, the Chinese state-owned chip designer Tsinghua Unigroup Ltd. just made a $23 billion bid for US memory manufacturer, Micron Technology. Analysts say the deal, which would be the largest transfer of its kind, would face intense scrutiny by US officials concerned with the security and anti-trust implications of allowing the last memory chipmaker in the US to be transferred to a state-controlled entity.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire