Gearing Up for the Cluster of Tomorrow

By Tiffany Trader

July 23, 2015

While the shifting architectural landscape of elite supercomputing gets a lot of the spotlight especially around TOP500 time, cluster computing has grown to comprise more than three-quarters of the HPC market. At a joint Cray-IDC webinar held earlier today, the partners discussed how clusters, and specifically scale-out “cluster supercomputers,” are evolving in ways that can benefit from supercomputing technology.

Steve Conway, research vice president of High Performance Computing at IDC, made the point that clustered servers (clusters) have democratized the supercomputing market. Clusters are the dominant type of HPC systems today, owing to the compelling price/performance that is enabled by their heavy reliance on industry-standard technologies. According to IDC market research, spending on all supercomputers about doubled from 2009 to 2014, and clusters captured an ever-larger share of this growing market segment. In 2014, clusters accounted for over 85 percent of worldwide HPC server revenues, up from just 33.5 percent five years prior.

“Although tightly-coupled supercomputers that capture a lot of the media headlines are indispensable for the most challenging HPC problems, most big problems can be handled very well by large scale-out clusters,” said Conway. The vast majority of big supercomputers, ones that sell for more than $500,000, are clusters — IDC calls these “cluster supercomputers.”

Conway pointed out that in this high-end >$500,000 segment, the average price point in 2014 was a little over $2 million, noting that this of course includes some supercomputers that cost more than $100 million. “In the former era of monolithic vector supercomputers, the biggest machine you could buy cost about $30 million because they really weren’t scalable systems,” said Conway, adding that “today’s clusters can scale way up and way down.” The average workgroup cluster cost just $19,000 in 2014.

IDC technical computer market average sales prices 2015

Over the past five years, IDC figures show that average core counts have almost doubled. This means that there are more parts to manage in the typical cluster and a higher probability of having one or more of the parts fail.

“But escalating core counts are only one of the cluster management challenges users consistently point out to us in research studies,” Conway observed. “The challenges pretty much begin with the fact that clusters are made up of independent computers that were not originally designed to work with each other. You really need outstanding networking and software technologies to overcome this deficit and to coax strong performance out of clusters.

“Other important challenges include heterogeneous components, especially the addition of accelerators and coprocessors, but also on the software side, the components of the software stack have become very numerous and very varied. The basic cluster architecture doesn’t really vary and that’s a great benefit but vendors offer a whole spectrum of configuration choices and that adds to the management challenge as well so does data movement and storage especially given the growing importance of big data workloads.”

Storage vendors cite their biggest challenges as mixed I/O, that is having to deal with both batch and streaming data on the same cluster.

“As you’d expect the cluster challenges are exacerbated in cluster-supercomputers,” Conway shared. “It’s easy to build a really big cluster but it’s not easy to build one that works at large scale. Only a few vendors in the world have mastered that art — Cray being one of them. The company figured out how to make really big supercomputers work decades before it got into the cluster business and they’ve been exploiting that expertise and experience for the cluster-supercomputer products that they make now.

“Making these mega-clusters effective in production settings you need to deal with reliability and resiliency in situations where one or more parts may be in failure mode. Otherwise you can lose on your long running jobs, and that’s painful. You need to monitor wellness, and anticipate parts failures before they happen so the system can do workarounds and you have to keep the data moving to keep the processors busy. Power and cooling is another big challenge.”

In a recent study, buyers listed the improvements that they most desired. At the top of the list were tighter integration of the architecture, more resiliency, more capable management software, better interconnects and I/O and storage improvements.

IDC Desired cluster traits

“More scalable, resilient and integrated architecture” was the most cited response, getting the attention of 53 percent of those surveyed.

Near the bottom of the list, not surprisingly, was higher system utilization. The average cluster or supercomputer has utilization rates at about 90 percent or better, compared with about 30 percent utilization in the enterprise server market. These numbers help explain the very low adoption rates for virtualization and server consolidation in HPC.

In line with user pain points, the software stack is going to be getting a lot more attention, according to the IDC analyst, due to the fast growth of clusters in size and complexity. Areas ripe for improvement include robustness; autonomic functioning and machine learning to relieve programmers, users and administrators; collaboration tools; and rebalancing of the stack to align with the rebalancing of workloads towards greater data-centricity.

IDC Attention Software Stack

IDC sees this as an attractive market for vendors and the numbers back this up. HPC systems software is on track to grow to $1.6 billion in 2019 and most of this will go to clusters since they represent most of the HPC market.

Increased heterogeneity is also driving cluster complexity as the market seeks alternatives to x86 processors that offer better data-level parallelism. The opening has allowed accelerator/coprocessor adoption to ramp up quickly with site deployment going from 9 percent to 77 percent from 2008-2013, but as IDC and other analysts have noted, the growth is wider than it is deep. A lot of sites have a small number of such devices used for exploratory or experimental purposes rather than production computing. Interestingly, IDC has found that industrial firms tend to buy fewer accelerator and coprocessor parts in relation to x86, but deploys them in production scenarios at higher rates.

Conway also commented on another fast-growth market for HPC clusters: high-performance data analysis (HPDA). It’s not very big yet at just under a billion dollars on the server side, but it’s headed to $2.6 billion in 2018. This is a growth rate that is about three times that of overall HPC server sales. Some of it is organic owing to existing HPC sites that are doing data-intensive simulation and adding analytics to the mix — but some of it is brand new, coming from commercial companies adopting HPC purely for analytics because their enterprise technology cannot handle it.

This slide from IDC lists the major reasons that this newer part of the market is turning to HPC for analytics because as Conway put it “there is no place else to go with enterprise technology.”

IDC Why Turn to HPC for Big Data

The driver that doesn’t get talked about as much as others is the third bullet point: variability. While the volume of data can be thought of as as rows in a table, variables can be thought of as the columns, Conway observed.

The major background trend is the move away from the static searches that characterized the past two decades to an era of pattern discovery.

In a statistic that may come as a surprise, IDC’s findings show a full two-thirds of HPC sites are performing high-performance data analysis work, which includes data-intensive simulation and/or advanced analytics, with 30 percent of all HPC cycles spent on these “big data” tasks. The study also showed how Hadoop is about as widely used in HPC as it is in the commercial market and it’s just starting to come into its own because of the addition of hooks that allow it to be used productively in HPC. HPDA users’ wish list for future clusters includes better interconnects, I/O and storage.

In summary, while the entire cluster segment is facing issues relating to heterogeneity, configurations and data delivery, cluster supercomputers are facing additional pain points, which IDC lists as:

  • Performance at scale.
  • Reliability/resiliency at scale.
  • System wellness monitoring.
  • Data movement.
  • TCO/opex (especially power/cooling).

In part two of this feature, we will take a look at how Cray’s experience with high-end supercomputing has evolved into a strategy to address these needs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire