Cray Details Its Cluster Supercomputing Strategy

By Tiffany Trader

July 28, 2015

When iconic American supercomputer maker Cray purchased 20-year-old HPC cluster vendor Appro in late 2012, Cray CEO Peter Ungaro referred to Appro’s principal IP as “one of the most advanced industry clusters in the world.” At the time HPCwire reported that Cray would benefit from the product line and a bigger sales team from Appro, and Appro would benefit from Cray’s overseas connections.

Nearly three years have passed, and Cray can now claim a product portfolio that spans the cluster-supercomputer divide with its Appro-derived CS “cluster supercomputer” series, designed to handle a broad range of medium- to large-scale simulation and data analytics workloads, and its XC- and next-generation Shasta lines, based on Cray’s vision of adaptive supercomputing, engineered to provide both extreme scalability and sustained performance.

The collection of sites that have deployed Cray CS cluster supercomputers, alone or in tandem with the company’s tightly-coupled XC supercomputer products, includes the Swiss National Supercomputing Center (CSCS), the Department of Defense High Performance Computing Modernization Program, Lawrence Livermore National Laboratory, the University of Tsukuba (Japan), Mississippi State University, the University of Tennessee, the Railway Technical Research Institute (Japan), and San Diego Supercomputer Center.

As a recent Cray-IDC webinar and related white paper convey, the cluster computing ecosystem is facing challenges relating to heterogeneity of processor types and increased data-centricity. On account of their sheer scale and increased complexity, cluster supercomputers, defined by IDC as clusters that sell for more than $500,000, tend to up the difficulty level substantially. Consider that, according to IDC reports, the average cluster supercomputer in 2013 (with 389 nodes) has about 22 times more nodes than its smaller cousins (with an average of 17.9 nodes). Specific challenges faced by these über-clusters include scaling systems software and applications; reliability/resilience; data movement; and power and cooling expenses.

Cray technology adapted from supercomputing slide 2015

Cray and IDC review these challenges and examine some of the ways that Cray has borrowed from its flagship supercomputing line to meet the requirements of its cluster customers.

In the IDC portion of the webinar, covered in an previous HPCwire article, Research Vice President of High Performance Computing at IDC Steve Conway made the point that clusters are driving growth in both HPC and HPDA markets. John Lee, Cray’s vice president of product management, Cray Cluster Solutions, says that Cray’s vision does not put an artificial wall between these, but sees these two complimentary workflows blending into a single paradigm. “Cray’s vision,” he says “is to develop a market leading solution in the areas of compute, store and analyze, to deliver fast solutions to both large math problems and data problems.”

As of the recent TOP500 list, Cray ranked number one in the top 50 with 17 systems and in the top 100 with 31 machines. In the entire list, Cray is number three with 71 systems, behind HP and IBM.

Lee says that while most people continue to associate Cray with “big iron” supercomputers, and while these do make up the majority of its TOP500 share, Cray also lays claim to a lot of “medium iron.” The company has 22 clusters on the recent list, which is 31 percent of its total system allotment. Lee calls out two systems in particular (numbers 13 and 14, CS-Storm clusters) which reflect Cray’s ability to leverage its supercomputing technologies in building very large production systems.

The systems highlighted in blue (below) denote new Cray-built entrants to the list, but as Lee emphasizes, there are a number of smaller clusters (not on the list) that Cray has delivered that vary in complexity and size and still benefit from Cray’s elite line.

Cray cluster leadership slide 2015

Lee says that Cray’s portfolio of two compute products is designed to offer different tools for different problems but with significant technology cross-over.

“While these are two distinct products addressing different market segments, there are lots of technology cross-over where it makes sense,” he states. “For instance, our CS cluster line is leveraged heavily in our data analytics and storage products while supercomputing technologies, developed for our XC series, like innovative packaging and cooling, highly efficient power distribution to the rack, high-speed signal integrity design and comprehensive software tools, are all infused into our cluster systems.”

As system complexity and size increases, Cray is selectively migrating technologies from its supercomputing line to tackle some of the most pressing challenges of large-scale clusters, such as the need to exploit extreme parallelism, the need for greater system resiliency, the need for creative and efficient ways to power and cool the system, and the need for a comprehensive high-performance computing stack that can run at scale and hide programming complexity.

Lee acknowledges that Cray does not have the answers to all the problems facing the high performance computing today, but says the company is making large investments of both money and resources to tackle these problems.

Adaptive Supercomputing

Cray launched its adaptive supercomputing strategy in 2004 to take advantage of different processor architectures for different problems. This had led to its supporting accelerators — GPUs and Xeon Phi parts — on all of its systems. On the current TOP500 list, Cray has the highest share of accelerated systems with 53 such machines.

Lee upholds CS-Storm as an example of a hybrid system that is scalable and power-efficient. Storm is a CS series system with 8 GPU nodes in a 2U chassis optimized for GPU applications. The design supports 176 NVIDIA Tesla K40 or K80 GPUs in a rack offering a potential 329 GPU teraflops per (K80-filled) rack, making it possible to realize 1 petaflops in just three racks.

The power and cooling architecture was designed to ensure that the accelerators run at their maximum performance without power capping or thermal throttling. Innovations in design borrowed from Cray’s flagship XC line include high signal integrity between the host processor and each of the GPUs to ensure reliable error free operation of the GPUs during their heaviest workload. Lee notes that software tools make it easier for customers to extract data level parallelism from their application to take advantage of these manycore architectures. He adds that the name “Storm” heralds from the late 1990s Red Storm project, which marked Cray’s transition to commodity processors.

An example of real-world scaling on GPU nodes can be seen in the case of an oil and gas application called SPECFEM3D, a seismology community code. According to data provided by BP and Princeton, SPECFEM3D has near linear scaling going from 18 minutes on a single GPU to 1.5 minutes across 16 GPUs.

“While not all applications scale this well, for those that do have strong scaling characteristics, CS-Storm can be a very powerful tool,” observes Lee.

Moving on to system resiliency, Lee notes that it is no longer a nice to have feature but a necessity, and that’s in large part because the democratization of supercomputing by clusters has resulted in more non-traditional HPC customers using cluster supercomputers. According to IDC figures, cluster adoption has increased from 65 percent in 2008 to over 80 percent in 2013.

“More mission critical applications are being run on these systems and wider adoption has resulted in increased demand for higher productivity. Sadly the industry trends have been moving in the opposite direction and there are several factors driving this trend,” explains Lee.

“First, as supercomputers have become more economical with increased adoption of affordable commodity clusters, our customers are fielding larger and larger machines. As systems get larger, overall reliability of the system decreases. The second factor that is contributing to the system downtime is individual nodes getting less reliable. This is a byproduct of today’s compute ecosystem. Servers today are vastly different than the servers of yesterday. The server market is being heavily influenced by the hyperscale customers that are pressuring suppliers to drive down costs at the expense of quality and reliability. Hyperscale customers are more tolerant of node level failures because they address that problem at the software layer,” he continues.

“The HPC cluster market has leveraged the larger server ecosystems to drive down cost and these market trends have impacted the overall quality of the systems that we can build. This problem is exacerbated by the fact that the individual nodes in an HPC cluster are becoming more and more powerful. Each node is being asked to do more and this is especially true with hybrid nodes. In some cases each node has one, two, four or even eight accelerators connected to a single host. In those cases, losing a single node means not only losing the host processors but losing all the accelerators and the compute power they deliver.”

Lee goes on to compare the cloud reliability model with clusters. In the hyperscale or cloud reliability model, emphasis is on cost reduction and failure is an every day or every moment occurrence. When a server fails, intelligent software restarts the job on another server. Server failure does not result in much work lost. But in a classic HPC workload environment, many servers are being used to run a single job. Depending on the size of the job and number of nodes, the mean time between failures can be less than a day or perhaps hours. “The reliability of the job is directly proportional to the reliability of your individual servers,” says Lee. “In this case, the loss of one server of course results in the loss of the entire job.”

Reliable systems are engineered from the ground up, the Cray rep observes, from both a micro and macro level. At the micro level it starts with the compute nodes since compute nodes make up the majority of the system and have the biggest impact on reliability. And then there is a holistic approach for the peripherals in order to have a reliable system.

Cray reliable clusters slide 2015

Cray made a decision to go with a strong motherboard partner matched to the needs of demanding HPC applications. Cray says that when it went with a motherboard from an overseas vendor, it found them to be lacking. Since 2012, the Cray cluster product group has been working with Intel to codesign boards that are purposely built for HPC. These are half-width, high reliability boards with a feature set to address specific customer needs.

According to a study from UC Berkeley, single server component failures break down as follows: hard drive at 47 percent, fans at 33 percent, power supplies at 13 percent. Cray engineered its systems to run diskless to eliminate the single highest failing component, and then it engineered built-in redundancy for both fans and power supplies to increase overall system reliability. The remaining 7 percent, which can be attributed to memory, board and processor failures, Cray minimizes with the use of high-quality boards and factory-burn-in tests.

The Soft Side of Big Iron

“What makes our system what it is has just as much to do with our software than our hardware says,” says Lee emphatically, and the company actually has more software engineers than hardware engineers. For customers who manage their own stack, like SDSC and LLNL, Cray can and does ship systems without a software stack, but for those who want a more turnkey solution, Cray ships systems with a Cray HPC software stack, consisting of Cray’s cluster management software framework and other stack tools.

Cray software ecosystem slide 2015

Another prominent example of Cray’s portfolio synergy includes the Cray Programming Environment, which features mature vectorizing compilers designed to improve the performance and ease of programming of clusters. Cray reports this compiler capability is especially important for efficiently exploiting NVIDIA GPGPU accelerators and Intel Xeon Phi coprocessors.

Cray Programming Environment slide 2015

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

First Xeon-FPGA Integration Launched by Intel

May 22, 2018

Ever since Intel’s acquisition of FPGA specialist Altera in 2015 for $16.7 billion, it’s been widely acknowledged that some day, Intel would release a processor that integrates its mainstream Xeon CPU server chip wit Read more…

By Doug Black

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This