DOE Exascale Plan Gets Support with Caveats

By John Russell

July 28, 2015

The DOE and the National Nuclear Security Administration (NNSA) plan to develop and deploy exascale technology by 2023 received strong backing yesterday from an Advanced Scientific Computing Advisory Committee (ASCAC) sub-committee but with caveats in the form of seven recommendations for strengthening management of the Exascale Computing Initiative (ECI).

Subcommittee chair, Dan Reed, vice president for research and economic development at the University of Iowa, presented the report and findings to an ASCAC meeting. “Like any ambitious undertaking, DOE’s proposed exascale computing initiative (ECI) involves some risks. Despite the risks, the benefits of the initiative to scientific discovery, national security and U.S. economic competitiveness are clear and compelling,” he said.

The subcommittee draft report was approved with a final full ASCAC version expected in August. Reed called the ECI well-crafted and noted DOE’s demonstrated ability to manage complicated, multi-stakeholder projects. Perhaps surprisingly, technology challenges were a subordinate part of the report. Instead, the report focused on project management.

Reed said, “We chose and we think appropriately to focus primarily on the organization and management issues because the technical issues and application issues have been reviewed so extensively for so many years (the by-now-familiar 10 technical challenges defined by DOE are listed further below).” Technology challenges clearly remain, he agreed.

The sub-committee’s detailed recommendations include:

  • Develop a detailed management and execution plan that defines clear responsibilities and decision-making authority to manage resources, risks, and dependencies appropriately across vendors, DOE laboratories, and other participants.
  • As part of the execution plan, clearly distinguish essential system attributes (e.g., sustained performance levels) from aspirational ones (e.g., specific energy consumption goals) and focus effort accordingly.
  • Given the scope, complexity, and potential impact of the ECI, conduct periodic external reviews by a carefully constituted advisory board.
  • Mitigate software risks by developing evolutionary alternatives to more innovative, but risky alternatives.
  • Unlike other elements of the hardware/software ecosystem, application performance and stability are mission critical, necessitating continued focus on hardware/software co-design to meet application needs.
  • Remain cognizant of the need for the ECI to support for data intensive and computation intensive workloads.
  • Where appropriate, work with other federal research agencies and international partners on workforce development and long-term research needs, while not creating dependences that could delay or imperil the execution plan.

Reed emphasized the need to be realistic in approaching the project and cautioned when setting expectations, particularly since the project is receiving wider attention in Congress.

“There’s a lot of uncertainty about the enabling technology still because this is a multi-year R&D plan. Innovation is still required. One of the things we want to ensure is that people don’t focus on the subsidiary metrics at the risk of those becoming part of the public perception of what success criteria should be. People latch onto figures of merit, sometimes rightly and sometimes wrongly. This is as much a political guidance as a technical one,” said Reed.

ASCAC Exascale Report Apps
Co-design, productive use of applications (legacy and new), and focusing on DOE and NNSA goals to advance science, enhance national competitiveness and assure nuclear stockpile stewardship are all emphasized in the report. Extending the benefits of extreme scale computing beyond these rather exclusive communities was also a theme.

“The whole point [of ECI] is to do a revolutionary leap forward. But it’s also important as part of that to the extent possible that we build broad ecosystems because the economic pull from a broad ecosystem will bring in more applications developers, it will lead to not just exascale laboratory systems, but also petascale research lab systems [used by] a much broader user base and shift the economics as well,” said Reed.

The sub-committee also recognized the growth of data-intensive computing to near equal footing with compute-intensive. Reed emphasized the DOE should, “Keep in mind in that data intensive and computationally intensive workflows both matter and in fact most of the time they are the same thing. They are intertwined pretty deeply [and] draw on the same ecosystems of hardware and software. Both matter. That drives as a corollary some focus on a new generation of analysis tools and libraries that will be needed to interpret that data.”

ASCAC had been charged by DOE and NNSA to review the “conceptual design for the Exascale Computing Initiative” and to deliver a report by September. Sub-committee members included: Reed; Martin Berzins, University of Utah; Bob Lucas, Livermore Software Technology Corporation; Satoshi Matsuoka, Tokyo Institute of Technology; Rob Pennington, University of Illinois, retired; Vivek Sarkar, Rice University; and Valerie Taylor, Texas A&M University.

The ECI’s goal is to deploy by 2023, capable exascale computing systems. This is defined as a hundred-fold increase in sustained performance over today’s computing capabilities, enabling applications to address next-generation science, engineering, and data problems to advance Department of Energy (DOE) Office of Science and National Nuclear Security Administration (NNSA) missions.

The plan includes three distinct components: Exascale Research, Development and Deployment (ExaRD); Exascale Application Development (ExaAD) to take full advantage of the emerging exascale hardware and software technologies from ExaRD; and Exascale Platform Deployment (ExaPD) to prepare for and acquire two or more exascale computers.

ASCAC Exascale Report Goals
Given the many technical issues remaining, ECI mission adjustments are inevitable said Reed. Establishing an external advisory board – coordinated by a single individual or a group – and leveraging other collaborations to help monitor and advise the project was strongly recommended. Reed also said, “On interagency and international collaboration, seek collaborations that don’t imperil the execution plan. This is not an open ended research project; it’s an outcome driven project.”

Included in the report was a restatement of the top ten exascale challenges as identified by DOE, shown here:

  • Energy efficiency: Creating more energy-efficient circuit, power, and cooling technologies.
  • Interconnect technology: Increasing the performance and energy efficiency of data movement.
  • Memory technology: Integrating advanced memory technologies to improve both capacity and bandwidth.
  • Scalable system software: Developing scalable system software that is power- and resilience-aware.
  • Programming systems: Inventing new programming environments that express massive parallelism, data locality, and resilience
  • Data management: Creating data management software that can handle the volume, velocity and diversity of data that is anticipated.
  • Exascale algorithms: Reformulating science problems and redesigning, or reinventing, their solution algorithms for exascale systems.
  • Algorithms for discovery, design, and decision: Facilitating mathematical optimization and uncertainty quantification for exascale discovery, design, and decision making.
  • Resilience and correctness: Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.
  • Scientific productivity: Increasing the productivity of computational scientists with new software engineering tools and environment

The full ASCAC report is expected to be completed in August. Here is a link to the slides presented by Reed: http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20150727/Exascale_Computing_Initiative_Review.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This