DOE Exascale Plan Gets Support with Caveats

By John Russell

July 28, 2015

The DOE and the National Nuclear Security Administration (NNSA) plan to develop and deploy exascale technology by 2023 received strong backing yesterday from an Advanced Scientific Computing Advisory Committee (ASCAC) sub-committee but with caveats in the form of seven recommendations for strengthening management of the Exascale Computing Initiative (ECI).

Subcommittee chair, Dan Reed, vice president for research and economic development at the University of Iowa, presented the report and findings to an ASCAC meeting. “Like any ambitious undertaking, DOE’s proposed exascale computing initiative (ECI) involves some risks. Despite the risks, the benefits of the initiative to scientific discovery, national security and U.S. economic competitiveness are clear and compelling,” he said.

The subcommittee draft report was approved with a final full ASCAC version expected in August. Reed called the ECI well-crafted and noted DOE’s demonstrated ability to manage complicated, multi-stakeholder projects. Perhaps surprisingly, technology challenges were a subordinate part of the report. Instead, the report focused on project management.

Reed said, “We chose and we think appropriately to focus primarily on the organization and management issues because the technical issues and application issues have been reviewed so extensively for so many years (the by-now-familiar 10 technical challenges defined by DOE are listed further below).” Technology challenges clearly remain, he agreed.

The sub-committee’s detailed recommendations include:

  • Develop a detailed management and execution plan that defines clear responsibilities and decision-making authority to manage resources, risks, and dependencies appropriately across vendors, DOE laboratories, and other participants.
  • As part of the execution plan, clearly distinguish essential system attributes (e.g., sustained performance levels) from aspirational ones (e.g., specific energy consumption goals) and focus effort accordingly.
  • Given the scope, complexity, and potential impact of the ECI, conduct periodic external reviews by a carefully constituted advisory board.
  • Mitigate software risks by developing evolutionary alternatives to more innovative, but risky alternatives.
  • Unlike other elements of the hardware/software ecosystem, application performance and stability are mission critical, necessitating continued focus on hardware/software co-design to meet application needs.
  • Remain cognizant of the need for the ECI to support for data intensive and computation intensive workloads.
  • Where appropriate, work with other federal research agencies and international partners on workforce development and long-term research needs, while not creating dependences that could delay or imperil the execution plan.

Reed emphasized the need to be realistic in approaching the project and cautioned when setting expectations, particularly since the project is receiving wider attention in Congress.

“There’s a lot of uncertainty about the enabling technology still because this is a multi-year R&D plan. Innovation is still required. One of the things we want to ensure is that people don’t focus on the subsidiary metrics at the risk of those becoming part of the public perception of what success criteria should be. People latch onto figures of merit, sometimes rightly and sometimes wrongly. This is as much a political guidance as a technical one,” said Reed.

ASCAC Exascale Report Apps
Co-design, productive use of applications (legacy and new), and focusing on DOE and NNSA goals to advance science, enhance national competitiveness and assure nuclear stockpile stewardship are all emphasized in the report. Extending the benefits of extreme scale computing beyond these rather exclusive communities was also a theme.

“The whole point [of ECI] is to do a revolutionary leap forward. But it’s also important as part of that to the extent possible that we build broad ecosystems because the economic pull from a broad ecosystem will bring in more applications developers, it will lead to not just exascale laboratory systems, but also petascale research lab systems [used by] a much broader user base and shift the economics as well,” said Reed.

The sub-committee also recognized the growth of data-intensive computing to near equal footing with compute-intensive. Reed emphasized the DOE should, “Keep in mind in that data intensive and computationally intensive workflows both matter and in fact most of the time they are the same thing. They are intertwined pretty deeply [and] draw on the same ecosystems of hardware and software. Both matter. That drives as a corollary some focus on a new generation of analysis tools and libraries that will be needed to interpret that data.”

ASCAC had been charged by DOE and NNSA to review the “conceptual design for the Exascale Computing Initiative” and to deliver a report by September. Sub-committee members included: Reed; Martin Berzins, University of Utah; Bob Lucas, Livermore Software Technology Corporation; Satoshi Matsuoka, Tokyo Institute of Technology; Rob Pennington, University of Illinois, retired; Vivek Sarkar, Rice University; and Valerie Taylor, Texas A&M University.

The ECI’s goal is to deploy by 2023, capable exascale computing systems. This is defined as a hundred-fold increase in sustained performance over today’s computing capabilities, enabling applications to address next-generation science, engineering, and data problems to advance Department of Energy (DOE) Office of Science and National Nuclear Security Administration (NNSA) missions.

The plan includes three distinct components: Exascale Research, Development and Deployment (ExaRD); Exascale Application Development (ExaAD) to take full advantage of the emerging exascale hardware and software technologies from ExaRD; and Exascale Platform Deployment (ExaPD) to prepare for and acquire two or more exascale computers.

ASCAC Exascale Report Goals
Given the many technical issues remaining, ECI mission adjustments are inevitable said Reed. Establishing an external advisory board – coordinated by a single individual or a group – and leveraging other collaborations to help monitor and advise the project was strongly recommended. Reed also said, “On interagency and international collaboration, seek collaborations that don’t imperil the execution plan. This is not an open ended research project; it’s an outcome driven project.”

Included in the report was a restatement of the top ten exascale challenges as identified by DOE, shown here:

  • Energy efficiency: Creating more energy-efficient circuit, power, and cooling technologies.
  • Interconnect technology: Increasing the performance and energy efficiency of data movement.
  • Memory technology: Integrating advanced memory technologies to improve both capacity and bandwidth.
  • Scalable system software: Developing scalable system software that is power- and resilience-aware.
  • Programming systems: Inventing new programming environments that express massive parallelism, data locality, and resilience
  • Data management: Creating data management software that can handle the volume, velocity and diversity of data that is anticipated.
  • Exascale algorithms: Reformulating science problems and redesigning, or reinventing, their solution algorithms for exascale systems.
  • Algorithms for discovery, design, and decision: Facilitating mathematical optimization and uncertainty quantification for exascale discovery, design, and decision making.
  • Resilience and correctness: Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.
  • Scientific productivity: Increasing the productivity of computational scientists with new software engineering tools and environment

The full ASCAC report is expected to be completed in August. Here is a link to the slides presented by Reed: http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20150727/Exascale_Computing_Initiative_Review.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This