DOE Exascale Plan Gets Support with Caveats

By John Russell

July 28, 2015

The DOE and the National Nuclear Security Administration (NNSA) plan to develop and deploy exascale technology by 2023 received strong backing yesterday from an Advanced Scientific Computing Advisory Committee (ASCAC) sub-committee but with caveats in the form of seven recommendations for strengthening management of the Exascale Computing Initiative (ECI).

Subcommittee chair, Dan Reed, vice president for research and economic development at the University of Iowa, presented the report and findings to an ASCAC meeting. “Like any ambitious undertaking, DOE’s proposed exascale computing initiative (ECI) involves some risks. Despite the risks, the benefits of the initiative to scientific discovery, national security and U.S. economic competitiveness are clear and compelling,” he said.

The subcommittee draft report was approved with a final full ASCAC version expected in August. Reed called the ECI well-crafted and noted DOE’s demonstrated ability to manage complicated, multi-stakeholder projects. Perhaps surprisingly, technology challenges were a subordinate part of the report. Instead, the report focused on project management.

Reed said, “We chose and we think appropriately to focus primarily on the organization and management issues because the technical issues and application issues have been reviewed so extensively for so many years (the by-now-familiar 10 technical challenges defined by DOE are listed further below).” Technology challenges clearly remain, he agreed.

The sub-committee’s detailed recommendations include:

  • Develop a detailed management and execution plan that defines clear responsibilities and decision-making authority to manage resources, risks, and dependencies appropriately across vendors, DOE laboratories, and other participants.
  • As part of the execution plan, clearly distinguish essential system attributes (e.g., sustained performance levels) from aspirational ones (e.g., specific energy consumption goals) and focus effort accordingly.
  • Given the scope, complexity, and potential impact of the ECI, conduct periodic external reviews by a carefully constituted advisory board.
  • Mitigate software risks by developing evolutionary alternatives to more innovative, but risky alternatives.
  • Unlike other elements of the hardware/software ecosystem, application performance and stability are mission critical, necessitating continued focus on hardware/software co-design to meet application needs.
  • Remain cognizant of the need for the ECI to support for data intensive and computation intensive workloads.
  • Where appropriate, work with other federal research agencies and international partners on workforce development and long-term research needs, while not creating dependences that could delay or imperil the execution plan.

Reed emphasized the need to be realistic in approaching the project and cautioned when setting expectations, particularly since the project is receiving wider attention in Congress.

“There’s a lot of uncertainty about the enabling technology still because this is a multi-year R&D plan. Innovation is still required. One of the things we want to ensure is that people don’t focus on the subsidiary metrics at the risk of those becoming part of the public perception of what success criteria should be. People latch onto figures of merit, sometimes rightly and sometimes wrongly. This is as much a political guidance as a technical one,” said Reed.

ASCAC Exascale Report Apps
Co-design, productive use of applications (legacy and new), and focusing on DOE and NNSA goals to advance science, enhance national competitiveness and assure nuclear stockpile stewardship are all emphasized in the report. Extending the benefits of extreme scale computing beyond these rather exclusive communities was also a theme.

“The whole point [of ECI] is to do a revolutionary leap forward. But it’s also important as part of that to the extent possible that we build broad ecosystems because the economic pull from a broad ecosystem will bring in more applications developers, it will lead to not just exascale laboratory systems, but also petascale research lab systems [used by] a much broader user base and shift the economics as well,” said Reed.

The sub-committee also recognized the growth of data-intensive computing to near equal footing with compute-intensive. Reed emphasized the DOE should, “Keep in mind in that data intensive and computationally intensive workflows both matter and in fact most of the time they are the same thing. They are intertwined pretty deeply [and] draw on the same ecosystems of hardware and software. Both matter. That drives as a corollary some focus on a new generation of analysis tools and libraries that will be needed to interpret that data.”

ASCAC had been charged by DOE and NNSA to review the “conceptual design for the Exascale Computing Initiative” and to deliver a report by September. Sub-committee members included: Reed; Martin Berzins, University of Utah; Bob Lucas, Livermore Software Technology Corporation; Satoshi Matsuoka, Tokyo Institute of Technology; Rob Pennington, University of Illinois, retired; Vivek Sarkar, Rice University; and Valerie Taylor, Texas A&M University.

The ECI’s goal is to deploy by 2023, capable exascale computing systems. This is defined as a hundred-fold increase in sustained performance over today’s computing capabilities, enabling applications to address next-generation science, engineering, and data problems to advance Department of Energy (DOE) Office of Science and National Nuclear Security Administration (NNSA) missions.

The plan includes three distinct components: Exascale Research, Development and Deployment (ExaRD); Exascale Application Development (ExaAD) to take full advantage of the emerging exascale hardware and software technologies from ExaRD; and Exascale Platform Deployment (ExaPD) to prepare for and acquire two or more exascale computers.

ASCAC Exascale Report Goals
Given the many technical issues remaining, ECI mission adjustments are inevitable said Reed. Establishing an external advisory board – coordinated by a single individual or a group – and leveraging other collaborations to help monitor and advise the project was strongly recommended. Reed also said, “On interagency and international collaboration, seek collaborations that don’t imperil the execution plan. This is not an open ended research project; it’s an outcome driven project.”

Included in the report was a restatement of the top ten exascale challenges as identified by DOE, shown here:

  • Energy efficiency: Creating more energy-efficient circuit, power, and cooling technologies.
  • Interconnect technology: Increasing the performance and energy efficiency of data movement.
  • Memory technology: Integrating advanced memory technologies to improve both capacity and bandwidth.
  • Scalable system software: Developing scalable system software that is power- and resilience-aware.
  • Programming systems: Inventing new programming environments that express massive parallelism, data locality, and resilience
  • Data management: Creating data management software that can handle the volume, velocity and diversity of data that is anticipated.
  • Exascale algorithms: Reformulating science problems and redesigning, or reinventing, their solution algorithms for exascale systems.
  • Algorithms for discovery, design, and decision: Facilitating mathematical optimization and uncertainty quantification for exascale discovery, design, and decision making.
  • Resilience and correctness: Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.
  • Scientific productivity: Increasing the productivity of computational scientists with new software engineering tools and environment

The full ASCAC report is expected to be completed in August. Here is a link to the slides presented by Reed: http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20150727/Exascale_Computing_Initiative_Review.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire