AMD’s Exascale Strategy Hinges on Heterogeneity

By Tiffany Trader

July 29, 2015

In a recent IEEE Micro article, a team of engineers and computer scientists from chipmaker Advanced Micro Devices (AMD) describe the company’s vision for exascale computing as a heterogeneous approach based on “exascale nodes” (comprised of integrated CPUs and GPUs) along with the hardware and software support to support real-world application performance.

The authors of the paper, titled “Achieving Exascale Capabilities through Heterogeneous Computing,” also discuss the challenges involved in building a heterogeneous exascale machine and how AMD is addressing them.

As an example of the improvement that is needed to reach this next performance marker, the AMD staffers point out that exascale systems will conceivably span 100,000 nodes, which would require each node to be capable of providing at least 10 teraflops on real applications. Today, the most-performant GPUs offer a peak of about three double-precision teraflops.

A system with this much punch could be built with aggregate force, but at today’s technology levels, memory and internode communication bandwidth wouldn’t satisfy demand, the authors contend. The other main challenges involve strict power constraints of “just” tens of megawatts per system and the non-negotiable need for better resilience and reliability to keep the high-investment machine up and running.

AMD’s vision for realizing this overarching goal features a heterogeneous approach, which won’t come as a surprise to followers of the company. AMD talked up the potential benefits of tight CPU-GPU integration for HPC workloads when it acquired graphics chipset manufacturer ATI in 2006, and kicked off the Fusion program. In January 2012, AMD rebranded the Fusion platform as the Heterogeneous Systems Architecture (HSA). For much of 2013 and 2014, the company seemed focused almost exclusively on the enterprise and desktop space, but in recent months announced a return to the high-end server space and high-performance computing.

In the abstract for the piece, the authors make reference to the fact that as it gets harder and harder to extract performance [thanks to a diminished Moore’s law], customized hardware regains some of its appeal, but more than a decade’s access to cheap commodity off-the-shelf components is a difficult course to reverse. The heterogeneous approach says you can still use and benefit from commodity scales, but there will no longer be one ISA to rule them all.

They write:

“Hardware optimized for specific functions is much more energy efficient than implementing those functions with general purpose cores. However, there is a strong desire for supercomputer customers to not have to pay for custom components designed only for high-end HPC systems, and therefore high-volume GPU technology becomes a natural choice for energy-efficient data-parallel computing.”

AMD exascale vision figure 1 - IEEE Micro July 2015

In AMD’s envisioned exascale machine, each node consists of a high-performance accelerated processing unit (APU) which integrates a high-throughput general-purpose (GPGPU) with a high-performance multicore CPU. In the authors’ words, “the GPUs provide the high throughput required for exascale levels of computation, whereas the CPU cores handle hard-to-parallelize code sections and provide support for legacy applications.”

The AMD-conceived system also employs a heterogeneous memory architecture, comprised of a combination of die-stacked dynamic RAM (DRAM) and high-capacity nonvolatile memory (NVM) to achieve high bandwidth, low energy, and sufficient total memory capacity for the large problem sizes that will characterize exascale science. Rounding out AMD’s proposed system, compute and memory would connect to the other system nodes via a high-bandwidth, low-overhead network interface controller (NIC).

A straight-CPU system was considered as an exascale candidate, but AMD believes the requisite power envelope is unattainable in this design. It has also considered a system with external discrete GPU cards connected to CPUs, but believes an integrated chip is superior for the following reasons:

+ Lower overheads (both latency and energy) for communicating between the CPU and GPU for both data movement and launching tasks/ kernels.

+ Easier dynamic power shifting between the CPU and GPU.

+ Lower overheads for cache coherence and synchronization among the CPU and GPU cache hierarchies that in turn improve programmability.

+ Higher flops per m3 (performance density).

AMD believes so strongly in its APU-based approach (combined with its Heterogenous Systems Architecture framework) that it refers to its next-generation APU as an exascale heterogeneous processor (EHP).

“ A critical part of our heterogeneous computing vision is that each EHP fully supports HSA, which provides (among other things) a system architecture where all devices within a node (such as the CPU, GPU, and other accelerators) share a single, unified virtual memory space,” the authors state. “This lets programmers write applications in which CPU and GPU code can freely exchange pointers without needing expensive memory transfers over PCI Express (PCIe), reformatting or marshalling of data structures, or complicated device-specific memory allocation.

“HSA also provides user-level task queues supported by the hardware, wherein any computing unit can generate work for any other unit. For example, a GPU can launch new tasks on the GPU itself, or even back to the CPU, without involving the operating system or complex drivers, whereas in most conventional (non-HSA) GPU-based heterogeneous computing, all control must flow through the CPU, which can lead to significant inefficiencies and harder-to-program code structures.”

The figure from AMD shows what the the EHP architecture might look like. Note how it integrates CPU and GPU computational resources along with in-package memory (such as 3D DRAM) to provide 10 teraflops of sustained throughput, making it possible to achieve a target computational throughput of exactly 1 exaflop by coupling 100,000 EHP nodes. AMD points out that while the integrated 3D DRAM provides the bulk of the memory bandwidth, additional off-package memory is still required to serve total per-node memory capacity needs.

Heirarchical memory organization is employed to address the conflicting objectives of bandwidth and capacity, something that the AMD scientists explain in detail in the journal article. AMD envisions that “the first-level DRAM will offer high bandwidth and low energy-per-bit memory access, as well as buffering of store operations for the NVM layer.” In the exascale timeframe, the second level is considered likely to be implemented with NVM technologies (such as phase change memory and memristors). This second-level off-package memory is intended to satisfy per-node capacity mandates for less cost and lower energy than DRAM. AMD notes that for systems that need higher memory capacities, a third level of storage-class memory, such as flash or resistive memory, could be added to the node.

AMD’s conceptual EHP design isn’t limited to just x86 cores. As the company has detailed in the past, its vision for APUs is an open one. ARM is an HSA partner, and AMD hints that the ARM instruction set architecture could be used in a similar manner to x86 within the node: to execute serial portions of applications, non-performance-critical sections, or legacy applications that haven’t yet undergone porting to GPUs.

The 12-page paper offers a lot more than what’s covered here, including:

+ A deep discussion of the memory bandwidth and memory capacity requirements of exascale in the context of both current and in-development memory technologies.

+ An overview of the significance of the HSA project, which has a prominent role in providing “open hardware and software interfaces…that will enable HPC application programmers to unlock the computing capabilities of the underlying heterogeneous exascale system.”

+ Proposed solutions to such issues as programmability at scale and physical constraints relating to power, resilience and reliability.

+ The framing of heterogeneous computing as a key technology for enabling higher performance and lower power across the complete spectrum of computing devices, from laptops to game consoles to supercomputers.

The paper didn’t, however, offer many details as far as AMD’s GPU and APU roadmaps are concerned. The company does have a next-gen server APU in development that is on target to deliver “multi-teraflops for HPC and workstation” in the 2016-2017 timeframe, but it’s unclear whether these will be of the half- single- or double-precision variety.

And earlier this month, AMD announced the newest member of its GPU family, the FirePro S9170, said to be “the world’s first and fastest 32GB single-GPU server card for DGEMM heavy double-precision workloads.” The GPU chip is based on the second-generation AMD Graphics Core Next (GCN) GPU architecture, and is capable of delivering up to 5.24 teraflops of peak single precision compute performance and up to 2.62 teraflops of peak double precision performance. AMD says the card supports 40 percent better double precision performance, while using 10 percent less power than the competition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire