AMD’s Exascale Strategy Hinges on Heterogeneity

By Tiffany Trader

July 29, 2015

In a recent IEEE Micro article, a team of engineers and computer scientists from chipmaker Advanced Micro Devices (AMD) describe the company’s vision for exascale computing as a heterogeneous approach based on “exascale nodes” (comprised of integrated CPUs and GPUs) along with the hardware and software support to support real-world application performance.

The authors of the paper, titled “Achieving Exascale Capabilities through Heterogeneous Computing,” also discuss the challenges involved in building a heterogeneous exascale machine and how AMD is addressing them.

As an example of the improvement that is needed to reach this next performance marker, the AMD staffers point out that exascale systems will conceivably span 100,000 nodes, which would require each node to be capable of providing at least 10 teraflops on real applications. Today, the most-performant GPUs offer a peak of about three double-precision teraflops.

A system with this much punch could be built with aggregate force, but at today’s technology levels, memory and internode communication bandwidth wouldn’t satisfy demand, the authors contend. The other main challenges involve strict power constraints of “just” tens of megawatts per system and the non-negotiable need for better resilience and reliability to keep the high-investment machine up and running.

AMD’s vision for realizing this overarching goal features a heterogeneous approach, which won’t come as a surprise to followers of the company. AMD talked up the potential benefits of tight CPU-GPU integration for HPC workloads when it acquired graphics chipset manufacturer ATI in 2006, and kicked off the Fusion program. In January 2012, AMD rebranded the Fusion platform as the Heterogeneous Systems Architecture (HSA). For much of 2013 and 2014, the company seemed focused almost exclusively on the enterprise and desktop space, but in recent months announced a return to the high-end server space and high-performance computing.

In the abstract for the piece, the authors make reference to the fact that as it gets harder and harder to extract performance [thanks to a diminished Moore’s law], customized hardware regains some of its appeal, but more than a decade’s access to cheap commodity off-the-shelf components is a difficult course to reverse. The heterogeneous approach says you can still use and benefit from commodity scales, but there will no longer be one ISA to rule them all.

They write:

“Hardware optimized for specific functions is much more energy efficient than implementing those functions with general purpose cores. However, there is a strong desire for supercomputer customers to not have to pay for custom components designed only for high-end HPC systems, and therefore high-volume GPU technology becomes a natural choice for energy-efficient data-parallel computing.”

AMD exascale vision figure 1 - IEEE Micro July 2015

In AMD’s envisioned exascale machine, each node consists of a high-performance accelerated processing unit (APU) which integrates a high-throughput general-purpose (GPGPU) with a high-performance multicore CPU. In the authors’ words, “the GPUs provide the high throughput required for exascale levels of computation, whereas the CPU cores handle hard-to-parallelize code sections and provide support for legacy applications.”

The AMD-conceived system also employs a heterogeneous memory architecture, comprised of a combination of die-stacked dynamic RAM (DRAM) and high-capacity nonvolatile memory (NVM) to achieve high bandwidth, low energy, and sufficient total memory capacity for the large problem sizes that will characterize exascale science. Rounding out AMD’s proposed system, compute and memory would connect to the other system nodes via a high-bandwidth, low-overhead network interface controller (NIC).

A straight-CPU system was considered as an exascale candidate, but AMD believes the requisite power envelope is unattainable in this design. It has also considered a system with external discrete GPU cards connected to CPUs, but believes an integrated chip is superior for the following reasons:

+ Lower overheads (both latency and energy) for communicating between the CPU and GPU for both data movement and launching tasks/ kernels.

+ Easier dynamic power shifting between the CPU and GPU.

+ Lower overheads for cache coherence and synchronization among the CPU and GPU cache hierarchies that in turn improve programmability.

+ Higher flops per m3 (performance density).

AMD believes so strongly in its APU-based approach (combined with its Heterogenous Systems Architecture framework) that it refers to its next-generation APU as an exascale heterogeneous processor (EHP).

“ A critical part of our heterogeneous computing vision is that each EHP fully supports HSA, which provides (among other things) a system architecture where all devices within a node (such as the CPU, GPU, and other accelerators) share a single, unified virtual memory space,” the authors state. “This lets programmers write applications in which CPU and GPU code can freely exchange pointers without needing expensive memory transfers over PCI Express (PCIe), reformatting or marshalling of data structures, or complicated device-specific memory allocation.

“HSA also provides user-level task queues supported by the hardware, wherein any computing unit can generate work for any other unit. For example, a GPU can launch new tasks on the GPU itself, or even back to the CPU, without involving the operating system or complex drivers, whereas in most conventional (non-HSA) GPU-based heterogeneous computing, all control must flow through the CPU, which can lead to significant inefficiencies and harder-to-program code structures.”

The figure from AMD shows what the the EHP architecture might look like. Note how it integrates CPU and GPU computational resources along with in-package memory (such as 3D DRAM) to provide 10 teraflops of sustained throughput, making it possible to achieve a target computational throughput of exactly 1 exaflop by coupling 100,000 EHP nodes. AMD points out that while the integrated 3D DRAM provides the bulk of the memory bandwidth, additional off-package memory is still required to serve total per-node memory capacity needs.

Heirarchical memory organization is employed to address the conflicting objectives of bandwidth and capacity, something that the AMD scientists explain in detail in the journal article. AMD envisions that “the first-level DRAM will offer high bandwidth and low energy-per-bit memory access, as well as buffering of store operations for the NVM layer.” In the exascale timeframe, the second level is considered likely to be implemented with NVM technologies (such as phase change memory and memristors). This second-level off-package memory is intended to satisfy per-node capacity mandates for less cost and lower energy than DRAM. AMD notes that for systems that need higher memory capacities, a third level of storage-class memory, such as flash or resistive memory, could be added to the node.

AMD’s conceptual EHP design isn’t limited to just x86 cores. As the company has detailed in the past, its vision for APUs is an open one. ARM is an HSA partner, and AMD hints that the ARM instruction set architecture could be used in a similar manner to x86 within the node: to execute serial portions of applications, non-performance-critical sections, or legacy applications that haven’t yet undergone porting to GPUs.

The 12-page paper offers a lot more than what’s covered here, including:

+ A deep discussion of the memory bandwidth and memory capacity requirements of exascale in the context of both current and in-development memory technologies.

+ An overview of the significance of the HSA project, which has a prominent role in providing “open hardware and software interfaces…that will enable HPC application programmers to unlock the computing capabilities of the underlying heterogeneous exascale system.”

+ Proposed solutions to such issues as programmability at scale and physical constraints relating to power, resilience and reliability.

+ The framing of heterogeneous computing as a key technology for enabling higher performance and lower power across the complete spectrum of computing devices, from laptops to game consoles to supercomputers.

The paper didn’t, however, offer many details as far as AMD’s GPU and APU roadmaps are concerned. The company does have a next-gen server APU in development that is on target to deliver “multi-teraflops for HPC and workstation” in the 2016-2017 timeframe, but it’s unclear whether these will be of the half- single- or double-precision variety.

And earlier this month, AMD announced the newest member of its GPU family, the FirePro S9170, said to be “the world’s first and fastest 32GB single-GPU server card for DGEMM heavy double-precision workloads.” The GPU chip is based on the second-generation AMD Graphics Core Next (GCN) GPU architecture, and is capable of delivering up to 5.24 teraflops of peak single precision compute performance and up to 2.62 teraflops of peak double precision performance. AMD says the card supports 40 percent better double precision performance, while using 10 percent less power than the competition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This