AMD’s Exascale Strategy Hinges on Heterogeneity

By Tiffany Trader

July 29, 2015

In a recent IEEE Micro article, a team of engineers and computer scientists from chipmaker Advanced Micro Devices (AMD) describe the company’s vision for exascale computing as a heterogeneous approach based on “exascale nodes” (comprised of integrated CPUs and GPUs) along with the hardware and software support to support real-world application performance.

The authors of the paper, titled “Achieving Exascale Capabilities through Heterogeneous Computing,” also discuss the challenges involved in building a heterogeneous exascale machine and how AMD is addressing them.

As an example of the improvement that is needed to reach this next performance marker, the AMD staffers point out that exascale systems will conceivably span 100,000 nodes, which would require each node to be capable of providing at least 10 teraflops on real applications. Today, the most-performant GPUs offer a peak of about three double-precision teraflops.

A system with this much punch could be built with aggregate force, but at today’s technology levels, memory and internode communication bandwidth wouldn’t satisfy demand, the authors contend. The other main challenges involve strict power constraints of “just” tens of megawatts per system and the non-negotiable need for better resilience and reliability to keep the high-investment machine up and running.

AMD’s vision for realizing this overarching goal features a heterogeneous approach, which won’t come as a surprise to followers of the company. AMD talked up the potential benefits of tight CPU-GPU integration for HPC workloads when it acquired graphics chipset manufacturer ATI in 2006, and kicked off the Fusion program. In January 2012, AMD rebranded the Fusion platform as the Heterogeneous Systems Architecture (HSA). For much of 2013 and 2014, the company seemed focused almost exclusively on the enterprise and desktop space, but in recent months announced a return to the high-end server space and high-performance computing.

In the abstract for the piece, the authors make reference to the fact that as it gets harder and harder to extract performance [thanks to a diminished Moore’s law], customized hardware regains some of its appeal, but more than a decade’s access to cheap commodity off-the-shelf components is a difficult course to reverse. The heterogeneous approach says you can still use and benefit from commodity scales, but there will no longer be one ISA to rule them all.

They write:

“Hardware optimized for specific functions is much more energy efficient than implementing those functions with general purpose cores. However, there is a strong desire for supercomputer customers to not have to pay for custom components designed only for high-end HPC systems, and therefore high-volume GPU technology becomes a natural choice for energy-efficient data-parallel computing.”

AMD exascale vision figure 1 - IEEE Micro July 2015

In AMD’s envisioned exascale machine, each node consists of a high-performance accelerated processing unit (APU) which integrates a high-throughput general-purpose (GPGPU) with a high-performance multicore CPU. In the authors’ words, “the GPUs provide the high throughput required for exascale levels of computation, whereas the CPU cores handle hard-to-parallelize code sections and provide support for legacy applications.”

The AMD-conceived system also employs a heterogeneous memory architecture, comprised of a combination of die-stacked dynamic RAM (DRAM) and high-capacity nonvolatile memory (NVM) to achieve high bandwidth, low energy, and sufficient total memory capacity for the large problem sizes that will characterize exascale science. Rounding out AMD’s proposed system, compute and memory would connect to the other system nodes via a high-bandwidth, low-overhead network interface controller (NIC).

A straight-CPU system was considered as an exascale candidate, but AMD believes the requisite power envelope is unattainable in this design. It has also considered a system with external discrete GPU cards connected to CPUs, but believes an integrated chip is superior for the following reasons:

+ Lower overheads (both latency and energy) for communicating between the CPU and GPU for both data movement and launching tasks/ kernels.

+ Easier dynamic power shifting between the CPU and GPU.

+ Lower overheads for cache coherence and synchronization among the CPU and GPU cache hierarchies that in turn improve programmability.

+ Higher flops per m3 (performance density).

AMD believes so strongly in its APU-based approach (combined with its Heterogenous Systems Architecture framework) that it refers to its next-generation APU as an exascale heterogeneous processor (EHP).

“ A critical part of our heterogeneous computing vision is that each EHP fully supports HSA, which provides (among other things) a system architecture where all devices within a node (such as the CPU, GPU, and other accelerators) share a single, unified virtual memory space,” the authors state. “This lets programmers write applications in which CPU and GPU code can freely exchange pointers without needing expensive memory transfers over PCI Express (PCIe), reformatting or marshalling of data structures, or complicated device-specific memory allocation.

“HSA also provides user-level task queues supported by the hardware, wherein any computing unit can generate work for any other unit. For example, a GPU can launch new tasks on the GPU itself, or even back to the CPU, without involving the operating system or complex drivers, whereas in most conventional (non-HSA) GPU-based heterogeneous computing, all control must flow through the CPU, which can lead to significant inefficiencies and harder-to-program code structures.”

The figure from AMD shows what the the EHP architecture might look like. Note how it integrates CPU and GPU computational resources along with in-package memory (such as 3D DRAM) to provide 10 teraflops of sustained throughput, making it possible to achieve a target computational throughput of exactly 1 exaflop by coupling 100,000 EHP nodes. AMD points out that while the integrated 3D DRAM provides the bulk of the memory bandwidth, additional off-package memory is still required to serve total per-node memory capacity needs.

Heirarchical memory organization is employed to address the conflicting objectives of bandwidth and capacity, something that the AMD scientists explain in detail in the journal article. AMD envisions that “the first-level DRAM will offer high bandwidth and low energy-per-bit memory access, as well as buffering of store operations for the NVM layer.” In the exascale timeframe, the second level is considered likely to be implemented with NVM technologies (such as phase change memory and memristors). This second-level off-package memory is intended to satisfy per-node capacity mandates for less cost and lower energy than DRAM. AMD notes that for systems that need higher memory capacities, a third level of storage-class memory, such as flash or resistive memory, could be added to the node.

AMD’s conceptual EHP design isn’t limited to just x86 cores. As the company has detailed in the past, its vision for APUs is an open one. ARM is an HSA partner, and AMD hints that the ARM instruction set architecture could be used in a similar manner to x86 within the node: to execute serial portions of applications, non-performance-critical sections, or legacy applications that haven’t yet undergone porting to GPUs.

The 12-page paper offers a lot more than what’s covered here, including:

+ A deep discussion of the memory bandwidth and memory capacity requirements of exascale in the context of both current and in-development memory technologies.

+ An overview of the significance of the HSA project, which has a prominent role in providing “open hardware and software interfaces…that will enable HPC application programmers to unlock the computing capabilities of the underlying heterogeneous exascale system.”

+ Proposed solutions to such issues as programmability at scale and physical constraints relating to power, resilience and reliability.

+ The framing of heterogeneous computing as a key technology for enabling higher performance and lower power across the complete spectrum of computing devices, from laptops to game consoles to supercomputers.

The paper didn’t, however, offer many details as far as AMD’s GPU and APU roadmaps are concerned. The company does have a next-gen server APU in development that is on target to deliver “multi-teraflops for HPC and workstation” in the 2016-2017 timeframe, but it’s unclear whether these will be of the half- single- or double-precision variety.

And earlier this month, AMD announced the newest member of its GPU family, the FirePro S9170, said to be “the world’s first and fastest 32GB single-GPU server card for DGEMM heavy double-precision workloads.” The GPU chip is based on the second-generation AMD Graphics Core Next (GCN) GPU architecture, and is capable of delivering up to 5.24 teraflops of peak single precision compute performance and up to 2.62 teraflops of peak double precision performance. AMD says the card supports 40 percent better double precision performance, while using 10 percent less power than the competition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This