White House Launches National HPC Strategy

By John Russell and Tiffany Trader

July 30, 2015

Yesterday’s executive order by President Barack Obama creating a National Strategic Computing Initiative (NSCI) is not only powerful acknowledgment of the vital role HPC plays in modern society but is also indicative of government’s mounting worry that failure to coordinate and nourish HPC development on a broader scale would put the nation at risk. Not surprisingly, early reaction from the HPC community has been largely positive.

“My first reaction is that this is a long needed recognition of both the critical role that HPC, including HPC at the very limits of what is possible, plays in science and engineering, and the tremendous challenges facing computing as we reach the limits of current technologies. The statement that advances in HPC will require a holistic approach, including algorithms, software, and hardware, is most welcome,” said William Gropp, director, Parallel Computing Institute and chief scientist, NCSA University of Illinois Urbana-Champaign, and co-editor of HPCwire Exascale Edition.

“Cray is excited to see the executive order creating a national strategic computing initiative and the focus it will provide for supercomputing. Supercomputing is critical to our national competitiveness,” shared Barry Bolding, chief strategy officer at Cray. “This executive order’s call for coherence between modeling and simulation and data analytic computing will spur needed innovation and improve competitiveness. We are in an era where the convergence between supercomputing and big data is changing our lives daily. Because of this convergence, we face technological challenges that will require sustained engagements between government, academia and industry and Cray sees this executive order as a very positive step in global competitiveness.”

“IBM commends this effort by the Administration to sustain America’s position at the forefront of advanced computing,” commented Dave Turek, vice president of high performance computing market engagement at IBM. “Doing so is vital not only to helping our country compete in the global race to innovate, but also to giving our researchers and scientists powerful tools to unlock new discoveries.”

“The NSCI effort is terrific news for the research community and the HPC industry,” stated Ian Buck, vice president of Accelerated Computing at NVIDIA. “Reaching exascale computing levels will require new technologies that maximize performance and minimize power consumption, while making it easier for programmers and researchers to take full advantage of these new systems to drive innovation. At NVIDIA, we’ve helped build some of our nation’s largest supercomputers, including the future CORAL pre-exascale systems. With NSCI moving forward, we are now poised to drive further technology advancements to help make exascale a reality.”

“Now, what we’re seeing in President Obama’s Executive Order is a major proof point of the importance of high-end computer technology in bolstering and redefining national competitiveness,” commented Jorge Titinger, president and CEO of SGI. “In the past, a country’s competitiveness and global power was defined by economic growth and defense capabilities. But now we’re seeing the advent of actionable technological insight — especially derived from the power of big data — becoming a factor of a country’s power.”

“HPC has become such a competitive weapon. IDC ROI research, sponsored by DOE, is showing that national investments in HPC resources can provide an extremely large return on investment on the order of over $500 dollars in revenue for each dollar invested in HPC. Industries like oil & gas, finance, automotive, aerospace, pharmaceuticals, healthcare are showing massive ROIs from their investments in HPC,” said Earl Joseph, IDC program vice president and executive director HPC User Forum.

As outlined in the executive order, the NSCI has four overarching principles and five objectives, both bulleted out below.

NSCI principles:

  1. The United States must deploy and apply new HPC technologies broadly for economic competitiveness and scientific discovery.
  2. The United States must foster public-private collaboration, relying on the respective strengths of government, industry, and academia to maximize the benefits of HPC.
  3. The United States must adopt a whole-of-government approach that draws upon the strengths of and seeks cooperation among all executive departments and agencies with significant expertise or equities in HPC while also collaborating with industry and academia.
  4. The United States must develop a comprehensive technical and scientific approach to transition HPC research on hardware, system software, development tools, and applications efficiently into development and, ultimately, operations.

NSCI objectives:

  1. Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
  2. Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.
  3. Establishing, over the next 15 years, a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the “post- Moore’s Law era”).
  4. Increasing the capacity and capability of an enduring national HPC ecosystem by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.
  5. Developing an enduring public-private collaboration to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.

Many of the objectives echo plans already underway in the current Exascale Computing Initiative run by the DOE and National Nuclear Security Administration. This effort, however, seems broader and as the roster of planned NSCI participants indicates, it will be a huge undertaking.

Three agencies will lead: the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF). Also named are two foundational research and development agencies – the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST). The five deployment agencies identified are the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration.

An NCSI Executive Council, co-chaired by the director of the Office of Science and Technology Policy (OSTP) and the director of the Office of Management and Budget (OMB), will oversee NSCI activities. This council has been charged to “establish an implementation plan to support and align efforts across agencies” within 90 days and update annually. It’s well worth reviewing the relatively short full text of the executive order, which spells out in greater detail the roles and responsibilities of various NSCI participants.

Clearly making such an ambitious program work will be challenging.

“Ultimately, the success or failure of this ambitious effort hinges on the ability of the US Government to actively engage and include both the US academic and industrial sectors to help drive US gains in this critical field. Simply developing high-end systems to meet individual agency missions will not be enough; the project needs to foster a vibrant R&D as well as commercial HPC capability to ensure that the US can continue to build and market the most effective HPCs in the world,” said Bob Sorenson, now a research vice president for HPC with IDC but who previously served as a longtime senior HPC technology analyst supporting senior US Government policy makers on global HPC developments.

This program shouldn’t be about building the fastest and most powerful high-performance computer in the world, said Sorensen, but about establishing a broad-based ecosystem that can support the most ambitious US public and private scientific research agendas while helping the growing base of US industries that rely on these systems to design, test and build products – such as automobiles, aircrafts, and even specialty pharmaceuticals.

The devil, of course, is in the details and hopefully more will be revealed in the plan the NSCI Council is set to deliver before the end of the year.

On the technology front, the NSCI outline touches not only on familiar HPC challenges but also acknowledges the growing convergence of data-intensive computing with compute-intensive. Noted in the White House press release announcing the initiative is that “in the last 10 years, a new class of HPC system has emerged to collect, manage and analyze vast quantities of data arising from diverse sources, such as Internet web pages and scientific instruments. These “big data” systems will approach scales measured in exabytes (10^18 bytes)…By combining the computing power and the data capacity of these two classes of HPC systems, deeper insights can be gained through new approaches that combine simulation with actual data.” This recognition is drawing attention and approval.

“Importantly, the NSCI embraces the idea of big data and HPC convergence, something I believe is crucial to the future of computing – for scientific discovery, for national security and for economic competitiveness. Many of the tools and technologies for big data analytics and scientific computing are similar, yet the cultures and communities are largely disparate.  We must bring them together, for the benefit of both and for societal benefit. The NSCI will help do that,” said Dan Reed, vice president for research and economic development at the University of Iowa and an author of the recent ASCA review of the DOE’s Exascale Computing Initiative.

Reed also endorsed the multi-agency approach: “One of the NSCI’s key elements is interagency collaboration, with differential roles based on each agency’s unique strengths and capabilities. These include the development and deployment of exascale systems, research on new algorithms, software and enabling technologies (including post-silicon ones), and workforce development to address the critical shortage of computing experts. I’m also pleased to see the key role of NSF in science at the exascale (or extreme scale) is also specifically called out.”

As the executive order notes, for more than six decades, “US computing capabilities have been maintained through continuous research and the development and deployment of new computing systems with rapidly increasing performance on applications of major significance to government, industry, and academia.

“Maximizing the benefits of HPC in the coming decades will require an effective national response to increasing demands for computing power, emerging technological challenges and opportunities, and growing economic dependency on and competition with other nations. This national response will require a cohesive, strategic effort within the Federal Government and a close collaboration between the public and private sectors.”

We’ll see.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This