White House Launches National HPC Strategy

By John Russell and Tiffany Trader

July 30, 2015

Yesterday’s executive order by President Barack Obama creating a National Strategic Computing Initiative (NSCI) is not only powerful acknowledgment of the vital role HPC plays in modern society but is also indicative of government’s mounting worry that failure to coordinate and nourish HPC development on a broader scale would put the nation at risk. Not surprisingly, early reaction from the HPC community has been largely positive.

“My first reaction is that this is a long needed recognition of both the critical role that HPC, including HPC at the very limits of what is possible, plays in science and engineering, and the tremendous challenges facing computing as we reach the limits of current technologies. The statement that advances in HPC will require a holistic approach, including algorithms, software, and hardware, is most welcome,” said William Gropp, director, Parallel Computing Institute and chief scientist, NCSA University of Illinois Urbana-Champaign, and co-editor of HPCwire Exascale Edition.

“Cray is excited to see the executive order creating a national strategic computing initiative and the focus it will provide for supercomputing. Supercomputing is critical to our national competitiveness,” shared Barry Bolding, chief strategy officer at Cray. “This executive order’s call for coherence between modeling and simulation and data analytic computing will spur needed innovation and improve competitiveness. We are in an era where the convergence between supercomputing and big data is changing our lives daily. Because of this convergence, we face technological challenges that will require sustained engagements between government, academia and industry and Cray sees this executive order as a very positive step in global competitiveness.”

“IBM commends this effort by the Administration to sustain America’s position at the forefront of advanced computing,” commented Dave Turek, vice president of high performance computing market engagement at IBM. “Doing so is vital not only to helping our country compete in the global race to innovate, but also to giving our researchers and scientists powerful tools to unlock new discoveries.”

“The NSCI effort is terrific news for the research community and the HPC industry,” stated Ian Buck, vice president of Accelerated Computing at NVIDIA. “Reaching exascale computing levels will require new technologies that maximize performance and minimize power consumption, while making it easier for programmers and researchers to take full advantage of these new systems to drive innovation. At NVIDIA, we’ve helped build some of our nation’s largest supercomputers, including the future CORAL pre-exascale systems. With NSCI moving forward, we are now poised to drive further technology advancements to help make exascale a reality.”

“Now, what we’re seeing in President Obama’s Executive Order is a major proof point of the importance of high-end computer technology in bolstering and redefining national competitiveness,” commented Jorge Titinger, president and CEO of SGI. “In the past, a country’s competitiveness and global power was defined by economic growth and defense capabilities. But now we’re seeing the advent of actionable technological insight — especially derived from the power of big data — becoming a factor of a country’s power.”

“HPC has become such a competitive weapon. IDC ROI research, sponsored by DOE, is showing that national investments in HPC resources can provide an extremely large return on investment on the order of over $500 dollars in revenue for each dollar invested in HPC. Industries like oil & gas, finance, automotive, aerospace, pharmaceuticals, healthcare are showing massive ROIs from their investments in HPC,” said Earl Joseph, IDC program vice president and executive director HPC User Forum.

As outlined in the executive order, the NSCI has four overarching principles and five objectives, both bulleted out below.

NSCI principles:

  1. The United States must deploy and apply new HPC technologies broadly for economic competitiveness and scientific discovery.
  2. The United States must foster public-private collaboration, relying on the respective strengths of government, industry, and academia to maximize the benefits of HPC.
  3. The United States must adopt a whole-of-government approach that draws upon the strengths of and seeks cooperation among all executive departments and agencies with significant expertise or equities in HPC while also collaborating with industry and academia.
  4. The United States must develop a comprehensive technical and scientific approach to transition HPC research on hardware, system software, development tools, and applications efficiently into development and, ultimately, operations.

NSCI objectives:

  1. Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
  2. Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.
  3. Establishing, over the next 15 years, a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the “post- Moore’s Law era”).
  4. Increasing the capacity and capability of an enduring national HPC ecosystem by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.
  5. Developing an enduring public-private collaboration to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.

Many of the objectives echo plans already underway in the current Exascale Computing Initiative run by the DOE and National Nuclear Security Administration. This effort, however, seems broader and as the roster of planned NSCI participants indicates, it will be a huge undertaking.

Three agencies will lead: the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF). Also named are two foundational research and development agencies – the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST). The five deployment agencies identified are the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration.

An NCSI Executive Council, co-chaired by the director of the Office of Science and Technology Policy (OSTP) and the director of the Office of Management and Budget (OMB), will oversee NSCI activities. This council has been charged to “establish an implementation plan to support and align efforts across agencies” within 90 days and update annually. It’s well worth reviewing the relatively short full text of the executive order, which spells out in greater detail the roles and responsibilities of various NSCI participants.

Clearly making such an ambitious program work will be challenging.

“Ultimately, the success or failure of this ambitious effort hinges on the ability of the US Government to actively engage and include both the US academic and industrial sectors to help drive US gains in this critical field. Simply developing high-end systems to meet individual agency missions will not be enough; the project needs to foster a vibrant R&D as well as commercial HPC capability to ensure that the US can continue to build and market the most effective HPCs in the world,” said Bob Sorenson, now a research vice president for HPC with IDC but who previously served as a longtime senior HPC technology analyst supporting senior US Government policy makers on global HPC developments.

This program shouldn’t be about building the fastest and most powerful high-performance computer in the world, said Sorensen, but about establishing a broad-based ecosystem that can support the most ambitious US public and private scientific research agendas while helping the growing base of US industries that rely on these systems to design, test and build products – such as automobiles, aircrafts, and even specialty pharmaceuticals.

The devil, of course, is in the details and hopefully more will be revealed in the plan the NSCI Council is set to deliver before the end of the year.

On the technology front, the NSCI outline touches not only on familiar HPC challenges but also acknowledges the growing convergence of data-intensive computing with compute-intensive. Noted in the White House press release announcing the initiative is that “in the last 10 years, a new class of HPC system has emerged to collect, manage and analyze vast quantities of data arising from diverse sources, such as Internet web pages and scientific instruments. These “big data” systems will approach scales measured in exabytes (10^18 bytes)…By combining the computing power and the data capacity of these two classes of HPC systems, deeper insights can be gained through new approaches that combine simulation with actual data.” This recognition is drawing attention and approval.

“Importantly, the NSCI embraces the idea of big data and HPC convergence, something I believe is crucial to the future of computing – for scientific discovery, for national security and for economic competitiveness. Many of the tools and technologies for big data analytics and scientific computing are similar, yet the cultures and communities are largely disparate.  We must bring them together, for the benefit of both and for societal benefit. The NSCI will help do that,” said Dan Reed, vice president for research and economic development at the University of Iowa and an author of the recent ASCA review of the DOE’s Exascale Computing Initiative.

Reed also endorsed the multi-agency approach: “One of the NSCI’s key elements is interagency collaboration, with differential roles based on each agency’s unique strengths and capabilities. These include the development and deployment of exascale systems, research on new algorithms, software and enabling technologies (including post-silicon ones), and workforce development to address the critical shortage of computing experts. I’m also pleased to see the key role of NSF in science at the exascale (or extreme scale) is also specifically called out.”

As the executive order notes, for more than six decades, “US computing capabilities have been maintained through continuous research and the development and deployment of new computing systems with rapidly increasing performance on applications of major significance to government, industry, and academia.

“Maximizing the benefits of HPC in the coming decades will require an effective national response to increasing demands for computing power, emerging technological challenges and opportunities, and growing economic dependency on and competition with other nations. This national response will require a cohesive, strategic effort within the Federal Government and a close collaboration between the public and private sectors.”

We’ll see.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire