White House Launches National HPC Strategy

By John Russell and Tiffany Trader

July 30, 2015

Yesterday’s executive order by President Barack Obama creating a National Strategic Computing Initiative (NSCI) is not only powerful acknowledgment of the vital role HPC plays in modern society but is also indicative of government’s mounting worry that failure to coordinate and nourish HPC development on a broader scale would put the nation at risk. Not surprisingly, early reaction from the HPC community has been largely positive.

“My first reaction is that this is a long needed recognition of both the critical role that HPC, including HPC at the very limits of what is possible, plays in science and engineering, and the tremendous challenges facing computing as we reach the limits of current technologies. The statement that advances in HPC will require a holistic approach, including algorithms, software, and hardware, is most welcome,” said William Gropp, director, Parallel Computing Institute and chief scientist, NCSA University of Illinois Urbana-Champaign, and co-editor of HPCwire Exascale Edition.

“Cray is excited to see the executive order creating a national strategic computing initiative and the focus it will provide for supercomputing. Supercomputing is critical to our national competitiveness,” shared Barry Bolding, chief strategy officer at Cray. “This executive order’s call for coherence between modeling and simulation and data analytic computing will spur needed innovation and improve competitiveness. We are in an era where the convergence between supercomputing and big data is changing our lives daily. Because of this convergence, we face technological challenges that will require sustained engagements between government, academia and industry and Cray sees this executive order as a very positive step in global competitiveness.”

“IBM commends this effort by the Administration to sustain America’s position at the forefront of advanced computing,” commented Dave Turek, vice president of high performance computing market engagement at IBM. “Doing so is vital not only to helping our country compete in the global race to innovate, but also to giving our researchers and scientists powerful tools to unlock new discoveries.”

“The NSCI effort is terrific news for the research community and the HPC industry,” stated Ian Buck, vice president of Accelerated Computing at NVIDIA. “Reaching exascale computing levels will require new technologies that maximize performance and minimize power consumption, while making it easier for programmers and researchers to take full advantage of these new systems to drive innovation. At NVIDIA, we’ve helped build some of our nation’s largest supercomputers, including the future CORAL pre-exascale systems. With NSCI moving forward, we are now poised to drive further technology advancements to help make exascale a reality.”

“Now, what we’re seeing in President Obama’s Executive Order is a major proof point of the importance of high-end computer technology in bolstering and redefining national competitiveness,” commented Jorge Titinger, president and CEO of SGI. “In the past, a country’s competitiveness and global power was defined by economic growth and defense capabilities. But now we’re seeing the advent of actionable technological insight — especially derived from the power of big data — becoming a factor of a country’s power.”

“HPC has become such a competitive weapon. IDC ROI research, sponsored by DOE, is showing that national investments in HPC resources can provide an extremely large return on investment on the order of over $500 dollars in revenue for each dollar invested in HPC. Industries like oil & gas, finance, automotive, aerospace, pharmaceuticals, healthcare are showing massive ROIs from their investments in HPC,” said Earl Joseph, IDC program vice president and executive director HPC User Forum.

As outlined in the executive order, the NSCI has four overarching principles and five objectives, both bulleted out below.

NSCI principles:

  1. The United States must deploy and apply new HPC technologies broadly for economic competitiveness and scientific discovery.
  2. The United States must foster public-private collaboration, relying on the respective strengths of government, industry, and academia to maximize the benefits of HPC.
  3. The United States must adopt a whole-of-government approach that draws upon the strengths of and seeks cooperation among all executive departments and agencies with significant expertise or equities in HPC while also collaborating with industry and academia.
  4. The United States must develop a comprehensive technical and scientific approach to transition HPC research on hardware, system software, development tools, and applications efficiently into development and, ultimately, operations.

NSCI objectives:

  1. Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
  2. Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.
  3. Establishing, over the next 15 years, a viable path forward for future HPC systems even after the limits of current semiconductor technology are reached (the “post- Moore’s Law era”).
  4. Increasing the capacity and capability of an enduring national HPC ecosystem by employing a holistic approach that addresses relevant factors such as networking technology, workflow, downward scaling, foundational algorithms and software, accessibility, and workforce development.
  5. Developing an enduring public-private collaboration to ensure that the benefits of the research and development advances are, to the greatest extent, shared between the United States Government and industrial and academic sectors.

Many of the objectives echo plans already underway in the current Exascale Computing Initiative run by the DOE and National Nuclear Security Administration. This effort, however, seems broader and as the roster of planned NSCI participants indicates, it will be a huge undertaking.

Three agencies will lead: the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF). Also named are two foundational research and development agencies – the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST). The five deployment agencies identified are the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration.

An NCSI Executive Council, co-chaired by the director of the Office of Science and Technology Policy (OSTP) and the director of the Office of Management and Budget (OMB), will oversee NSCI activities. This council has been charged to “establish an implementation plan to support and align efforts across agencies” within 90 days and update annually. It’s well worth reviewing the relatively short full text of the executive order, which spells out in greater detail the roles and responsibilities of various NSCI participants.

Clearly making such an ambitious program work will be challenging.

“Ultimately, the success or failure of this ambitious effort hinges on the ability of the US Government to actively engage and include both the US academic and industrial sectors to help drive US gains in this critical field. Simply developing high-end systems to meet individual agency missions will not be enough; the project needs to foster a vibrant R&D as well as commercial HPC capability to ensure that the US can continue to build and market the most effective HPCs in the world,” said Bob Sorenson, now a research vice president for HPC with IDC but who previously served as a longtime senior HPC technology analyst supporting senior US Government policy makers on global HPC developments.

This program shouldn’t be about building the fastest and most powerful high-performance computer in the world, said Sorensen, but about establishing a broad-based ecosystem that can support the most ambitious US public and private scientific research agendas while helping the growing base of US industries that rely on these systems to design, test and build products – such as automobiles, aircrafts, and even specialty pharmaceuticals.

The devil, of course, is in the details and hopefully more will be revealed in the plan the NSCI Council is set to deliver before the end of the year.

On the technology front, the NSCI outline touches not only on familiar HPC challenges but also acknowledges the growing convergence of data-intensive computing with compute-intensive. Noted in the White House press release announcing the initiative is that “in the last 10 years, a new class of HPC system has emerged to collect, manage and analyze vast quantities of data arising from diverse sources, such as Internet web pages and scientific instruments. These “big data” systems will approach scales measured in exabytes (10^18 bytes)…By combining the computing power and the data capacity of these two classes of HPC systems, deeper insights can be gained through new approaches that combine simulation with actual data.” This recognition is drawing attention and approval.

“Importantly, the NSCI embraces the idea of big data and HPC convergence, something I believe is crucial to the future of computing – for scientific discovery, for national security and for economic competitiveness. Many of the tools and technologies for big data analytics and scientific computing are similar, yet the cultures and communities are largely disparate.  We must bring them together, for the benefit of both and for societal benefit. The NSCI will help do that,” said Dan Reed, vice president for research and economic development at the University of Iowa and an author of the recent ASCA review of the DOE’s Exascale Computing Initiative.

Reed also endorsed the multi-agency approach: “One of the NSCI’s key elements is interagency collaboration, with differential roles based on each agency’s unique strengths and capabilities. These include the development and deployment of exascale systems, research on new algorithms, software and enabling technologies (including post-silicon ones), and workforce development to address the critical shortage of computing experts. I’m also pleased to see the key role of NSF in science at the exascale (or extreme scale) is also specifically called out.”

As the executive order notes, for more than six decades, “US computing capabilities have been maintained through continuous research and the development and deployment of new computing systems with rapidly increasing performance on applications of major significance to government, industry, and academia.

“Maximizing the benefits of HPC in the coming decades will require an effective national response to increasing demands for computing power, emerging technological challenges and opportunities, and growing economic dependency on and competition with other nations. This national response will require a cohesive, strategic effort within the Federal Government and a close collaboration between the public and private sectors.”

We’ll see.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This