XSEDE Panel Highlights Diversity of NSF Computing Resources

By Trish Barker, Assistant Director for Public Affairs at NCSA

July 31, 2015

A plenary panel at the XSEDE15 conference, which took place this week in St. Louis, Mo., highlighted the broad spectrum of computing resources provided by the National Science Foundation, including several new and testbed projects and an effort to help more people use cyberinfrastructure to advance their research.

“I don’t think there has been a time previously when NSF funded the diversity of systems that are available today,” said panelist Craig Stewart, the associate dean of research technologies at Indiana University.

Irene Qualters, leader of the Division of Advanced Cyberinfrastructure within NSF’s Computer & Information Science & Engineering Directorate, kicked off the panel with an overview of how “the conduct and the practice of research are changing,” and how this is driving changes in cyberinfrastructure. In particular, she called out the rapid growth in data from diverse sources, including instruments and sensors and simulation; the increasing complexity of research problems, requiring multidisciplinary teams and multiscale modeling; wider global investment in research, providing more opportunities for collaboration; growing need for technically skilled workforce; and the need for increased societal responsibility and engagement.

NSF has responded to these and other drivers by fielding a diverse array of resources, each of which was spotlighted by one of the panelists:

  • Comet, a computing resource focused on the small and medium jobs that represent the “long-tail of science,” at the San Diego Supercomputer Center (SDSC). Comet entered production in May 2015.
  • Jetstream, a cloud system with hardware at Indiana University and TACC that is slated to go into production early in 2016.
  • Wrangler, a data-intensive system that includes hardware at the Texas Advanced Computing Center (TACC) and Indiana University
  • Bridges, a data-centric system slated to go into production early in 2016 at the Pittsburgh Supercomputing Center (PSC).
  • Chameleon and CloudLab, testbeds for research on cloud computing.

“I think all of the systems we’re talking about this morning did some interesting and deep analysis of usage patterns” to determine what researchers needed, said Stewart.

For example, SDSC Director Mike Norman said that data from 2012 showed that 99 percent of jobs run on XSEDE-allocated resources used fewer than 2,000 cores and 30 percent used just a single core. Based on that information, SDSC decided to focus Comet on those small to medium jobs, and even to under-allocate the resource so people can get quicker access. They aim to serve 10,000 users per year on Comet, a metric Norman thinks will be easily achieved, in part through embracing Science Gateways.

Jetstream is also aimed at aspects of the long-tail of science, Stewart explained. This cloud system is designed to provide interactive and on-demand computing capabilities via a suite of virtual machines. Users can customize, save, and share VMs—something that Stewart pointed out will make it easier to repeat and reproduce research. And like Comet, Jetstream embraces Science Gateways, working with the iPlant and Galaxy gateways.

A biologist by training, Stewart said that he recently tested the Jetstream interface to see if he could easily “do a little science.”

“It took me about 10 minutes to log in and do something on iPlant and about two hours to do the same thing using Amazon, so the interface really works,” he said.

Both Wrangler and Bridges focus on data needs. Niall Gaffney, director of Data Intensive Computing at TACC, pointed out that traditional high-performance computing systems and ways of working are often mismatched with the needs of data-intensive research. “Databases are not job,” he said. “Scratch is not a storage solution. Hadoop is not always HPC file system-friendly.”

Wrangler is intended to handle big data, lots of small data, structured and unstructured data, and both sequential and random I/O. It also needs to support a large number of applications and interfaces, including Hadoop, Spark, R, GIS, and others.

According to Gaffney, the highly flexible 600 TB flash storage system with bandwidth of 1 TB/sec is one of the most innovative features of Wrangler. “You can connect all 600 TB to one node if that’s what you need,” he said.

As an example of how Wrangler is enabling new data-centric activities, Gaffney said that OrthoMCL, a genomic workflow, would previously not complete on any TACC resource, but now runs in under four hours on Wrangler.

Construction of the data-centric Bridges system will begin in October, according to Nick Nystrom, director of Strategic Applications at PSC. Echoing other panelists, Nystrom agreed that Science Gateways are critical, particularly for communities that are not currently using HPC resources. “Many users don’t want to become programmers,” he said. “Gateways let them avoid a lot of complexity that people associate with traditional supercomputing.”

Bridges will include a pilot project with Temple University, focused on streamlining interoperation and helping people easily move from using campus resources to using nationally available resources such as those provided through XSEDE. “When Temple’s resources are at peak, some jobs can be migrated transparently to Bridges. And conversely, when Bridges is saturated, we can move jobs to Temple,” Nystrom explained.

In addition to these four compute systems available through XSEDE, the panel also highlighted two cloud computing testbeds, Chameleon and CloudLab, which give researchers the opportunity to build and test their own clouds. “There’s still a lot of work to be done in making clouds better and imagining what clouds will look like in the future,” said CloudLab’s Robert Ricci, a research assistant professor at the University of Utah.

The final panelist, Clemson University Jim Bottum, emphasized the need to provide training and assistance so more people from more disciplines can take advantage of all of these diverse computing resources.

“There is a training and education gap between resources and researchers,” he said. “There’s a high barrier to entry without human assistance, and the barriers become higher as we bring in new communities.”

Bottum leads the NSF-supported ACI-REF project, which has begun addressing this gap by enlisting facilitators who can act as “research concierges” for people who are looking for computing resources (or who may not even know what resources are available or how they could impact their research) and by offering training.  The goal is to grow the user base, both in terms of the number of people and the number of disciplines using cyberinfrastructure.

After just its first year, ACI-REF’s “concierges” have had 800+ consultations with individual researchers and more than 1,000 people have attended training sessions led by ACI-REF.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire