New National HPC Strategy Is Bold, Important and More Daunting than US Moonshot

By William Gropp and Thomas Sterling

August 6, 2015

“In order to maximize the benefits of HPC for economic competitiveness and scientific discovery, the United States Government must create a coordinated Federal strategy in HPC research, development, and deployment.” With these words, the President of the United States established the National Strategic Computing Initiative (NSCI) through Executive Order to implement this whole-of-government strategy in collaboration with industry and academia. Not since the signing of legislation in 1991 for the HPCC initiative has the nation articulated a bold and specific goal for the advancement of HPC and the benefits to be derived. While not over constraining the details of how exascale computing is to be achieved and exploited, this executive order establishes a national framework, objectives, and federal agency responsibilities across the government to regain international leadership and address the daunting technical challenges in the employment of exascale technologies.

Among the strategic goals of this singular national endeavor is the unification of data-intensive and compute-intensive approaches to architecture, system software, and programming methodologies and tools to maximize the benefits of HPC for the US. Today, systems in these arenas are perceived as distinct in role and structure. But it is recognized by expert practitioners in these sub-domains that each must rely, sometimes heavily, on the capabilities of the other. Computing in the science disciplines is often heavily engaged in the manipulation of data both from external sources and of their own creation requiring management of the entire storage hierarchy including mass storage while depending on I/O and system bandwidth for rapid data transport. Conversely, big data applications including graph analytics require massive concurrency of operation consistent with design properties of HPC systems. And of course, they both are derived from the same enabling technologies. It is indicative of this complementarity that such leadership vendors as Cray Inc. and IBM Corp. are equally focused on both aspects of the high end computing. Therefore, a national realization and goal of bringing the two domains into a single composite mutually supportive computing fabric will accelerate the ability to achieve sophisticated computational products integrating both modalities and also facilitate both through the research and development projected through this national enterprise.

The scale of computing mandated by this Presidential order for which cooperative research across the country is to be energized is “exascale” which is neither limited to a single parameter like FLOPS, nor a single operating point like 1 exaflops. Exascale is as much about data storage capacity and transport as it is related to arithmetic capability. And while 1 exaflops sustained performance on some select workload will serve as a demonstrable milestone, it will only be one of many across a broad performance regime that may span orders of magnitude in capability.

Further, the charter for the NSCI is not about creating a stunt machine for national stature – quite the opposite. It is about the deployment and application of systems delivering 1 exaflops and more sustained performance on real-world computational challenges of importance to the country and its society. This is to be accomplished through a cohesive multi-agency collaboration as well as public-private sector partnerships, over a sustained period of effort of probably well over a decade. Not simply targeting a next and arbitrary milestone, the NSCI directs the creation of a strategic vision and realistic Federal investment strategy for the US “to sustain and enhance its scientific, technological, and economic leadership position in HPC research, development, and deployment” and to transition HPC research into development of operational systems. This is about real world impact and opportunity of a future generation of supercomputing to be derived through the innovation and skills of the nations diverse and best skill force in a unified effort.

Not merely motivating the necessary achievement of exascale computing, this initiative intends to accelerate delivery of computing by two orders of magnitude with respect to contemporary system performance even as it merges the two dominant classes of STEM and Big Data computing that today appear as separate forms. Of significance is the explicit recognition and acknowledgement of the end of Moore’s Law and the need to establish a viable path forward for improved capabilities beyond these asymptotic limitations of anticipated semiconductor technology. Towards the effective utility of such sustained computing capability and capacity, it is stated as an objective to ensure and deploy a national HPC ecosystem capable of providing easy access to US resources for economic competitiveness, scientific discovery, and national security. A key strategy to this end is to encourage collaboration among the public and private sectors for the sharing of results of research and development.

The plan of action is to leverage the expertise, missions, and historical capabilities of many federal agencies working in concert to bring the full strengths of the nation in alignment. The lead agencies designated are the Department of Energy, the Department of Defense, and the National Science Foundation, each with its specific roles and responsibilities. IARPA and NIST will provide important foundational research and development capabilities for future computing paradigms and advanced measurement methods. And a number of agencies will deploy such future systems for their mission-driven objectives including NASA, FBI, NIH, DHS, and NOAA. This overall process will be guided by and receive oversight by an Executive Council comprising OSTP and OMB.

The NSCI framework leaves many facets of its implementation to the planning process to be lead by the Executive Council and involve the contributing bodies of the participating Federal agencies. This provides flexibility in determining the details of carrying out this mandate even as it sets the goals and charter for the contributing entities. Heavy reliance on US computer industry and academic research is emphasized even as the direction is derived by the mission agencies. The budget and its profile over the many years is unspecified but the requirements that such a budget needs to enable is clearly represented. An overarching philosophy that permeates the NSCI is one of cooperation and collaboration demanding a culture of community mutual involvement and sharing. This is a new challenge as well and one that may prove as significant as the purely technical ones. Historical tensions at many levels will have to be overcome but success at the national level may only be realized through a renaissance of mutually supportive engagement. Without this, US preeminence in exascale computing may prove unrealizable.

The NSCI charter is a balanced agenda of research and development of future technologies and methodologies as well as responsible deployment of systems and infrastructures to carry through the mission-critical obligations of the diverse participating agencies. The benefits sought are for the economy, society, and security of the nation and its citizens. It is a call to engagement. More than the next moonshot, it demands the talents, creativity, resources, and commitments of the nation’s forces be brought to bear on the needs of the country in the next generations in computing even as the ways of synthesizing practical experience and future innovation have yet to be prescribed.

This is a very exciting time but one that will demand responsible consideration and conviction as the new map of the field of exascale computing is being charted. This is not just the next American moonshot. It is more than a moonshot. As daunting as landing on the Moon was more than a generation ago, we understood the physics of the problem, where the Moon would be and when, and what success looked like. NSCI does not have such certainty. Perhaps most importantly it must create a future technological context with long lasting consequences and unending application. When Eugene Cernan stepped back on the ladder of Apollo 17 in 1972, he left the last footprints to impress the surface of the Moon in more than 50 years. We’ve never gone back. NSCI must build the bridge to the future of computing across which the US only goes forward. It will create the new physics, the new math (e.g., parallel algorithms), the new concepts of programming, architecture, and supportive software and infrastructures that will launch the US to the furthest frontiers of computing opportunity. But NSCI is only the first step. It is now the responsibility of this nation’s creators and users to come together in mutual supporting roles to advance this mandate in the service of the country and its people.

William Gropp and Thomas Sterling are co-editors of HPCwire’s Exascale Edition

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire