New National HPC Strategy Is Bold, Important and More Daunting than US Moonshot

By William Gropp and Thomas Sterling

August 6, 2015

“In order to maximize the benefits of HPC for economic competitiveness and scientific discovery, the United States Government must create a coordinated Federal strategy in HPC research, development, and deployment.” With these words, the President of the United States established the National Strategic Computing Initiative (NSCI) through Executive Order to implement this whole-of-government strategy in collaboration with industry and academia. Not since the signing of legislation in 1991 for the HPCC initiative has the nation articulated a bold and specific goal for the advancement of HPC and the benefits to be derived. While not over constraining the details of how exascale computing is to be achieved and exploited, this executive order establishes a national framework, objectives, and federal agency responsibilities across the government to regain international leadership and address the daunting technical challenges in the employment of exascale technologies.

Among the strategic goals of this singular national endeavor is the unification of data-intensive and compute-intensive approaches to architecture, system software, and programming methodologies and tools to maximize the benefits of HPC for the US. Today, systems in these arenas are perceived as distinct in role and structure. But it is recognized by expert practitioners in these sub-domains that each must rely, sometimes heavily, on the capabilities of the other. Computing in the science disciplines is often heavily engaged in the manipulation of data both from external sources and of their own creation requiring management of the entire storage hierarchy including mass storage while depending on I/O and system bandwidth for rapid data transport. Conversely, big data applications including graph analytics require massive concurrency of operation consistent with design properties of HPC systems. And of course, they both are derived from the same enabling technologies. It is indicative of this complementarity that such leadership vendors as Cray Inc. and IBM Corp. are equally focused on both aspects of the high end computing. Therefore, a national realization and goal of bringing the two domains into a single composite mutually supportive computing fabric will accelerate the ability to achieve sophisticated computational products integrating both modalities and also facilitate both through the research and development projected through this national enterprise.

The scale of computing mandated by this Presidential order for which cooperative research across the country is to be energized is “exascale” which is neither limited to a single parameter like FLOPS, nor a single operating point like 1 exaflops. Exascale is as much about data storage capacity and transport as it is related to arithmetic capability. And while 1 exaflops sustained performance on some select workload will serve as a demonstrable milestone, it will only be one of many across a broad performance regime that may span orders of magnitude in capability.

Further, the charter for the NSCI is not about creating a stunt machine for national stature – quite the opposite. It is about the deployment and application of systems delivering 1 exaflops and more sustained performance on real-world computational challenges of importance to the country and its society. This is to be accomplished through a cohesive multi-agency collaboration as well as public-private sector partnerships, over a sustained period of effort of probably well over a decade. Not simply targeting a next and arbitrary milestone, the NSCI directs the creation of a strategic vision and realistic Federal investment strategy for the US “to sustain and enhance its scientific, technological, and economic leadership position in HPC research, development, and deployment” and to transition HPC research into development of operational systems. This is about real world impact and opportunity of a future generation of supercomputing to be derived through the innovation and skills of the nations diverse and best skill force in a unified effort.

Not merely motivating the necessary achievement of exascale computing, this initiative intends to accelerate delivery of computing by two orders of magnitude with respect to contemporary system performance even as it merges the two dominant classes of STEM and Big Data computing that today appear as separate forms. Of significance is the explicit recognition and acknowledgement of the end of Moore’s Law and the need to establish a viable path forward for improved capabilities beyond these asymptotic limitations of anticipated semiconductor technology. Towards the effective utility of such sustained computing capability and capacity, it is stated as an objective to ensure and deploy a national HPC ecosystem capable of providing easy access to US resources for economic competitiveness, scientific discovery, and national security. A key strategy to this end is to encourage collaboration among the public and private sectors for the sharing of results of research and development.

The plan of action is to leverage the expertise, missions, and historical capabilities of many federal agencies working in concert to bring the full strengths of the nation in alignment. The lead agencies designated are the Department of Energy, the Department of Defense, and the National Science Foundation, each with its specific roles and responsibilities. IARPA and NIST will provide important foundational research and development capabilities for future computing paradigms and advanced measurement methods. And a number of agencies will deploy such future systems for their mission-driven objectives including NASA, FBI, NIH, DHS, and NOAA. This overall process will be guided by and receive oversight by an Executive Council comprising OSTP and OMB.

The NSCI framework leaves many facets of its implementation to the planning process to be lead by the Executive Council and involve the contributing bodies of the participating Federal agencies. This provides flexibility in determining the details of carrying out this mandate even as it sets the goals and charter for the contributing entities. Heavy reliance on US computer industry and academic research is emphasized even as the direction is derived by the mission agencies. The budget and its profile over the many years is unspecified but the requirements that such a budget needs to enable is clearly represented. An overarching philosophy that permeates the NSCI is one of cooperation and collaboration demanding a culture of community mutual involvement and sharing. This is a new challenge as well and one that may prove as significant as the purely technical ones. Historical tensions at many levels will have to be overcome but success at the national level may only be realized through a renaissance of mutually supportive engagement. Without this, US preeminence in exascale computing may prove unrealizable.

The NSCI charter is a balanced agenda of research and development of future technologies and methodologies as well as responsible deployment of systems and infrastructures to carry through the mission-critical obligations of the diverse participating agencies. The benefits sought are for the economy, society, and security of the nation and its citizens. It is a call to engagement. More than the next moonshot, it demands the talents, creativity, resources, and commitments of the nation’s forces be brought to bear on the needs of the country in the next generations in computing even as the ways of synthesizing practical experience and future innovation have yet to be prescribed.

This is a very exciting time but one that will demand responsible consideration and conviction as the new map of the field of exascale computing is being charted. This is not just the next American moonshot. It is more than a moonshot. As daunting as landing on the Moon was more than a generation ago, we understood the physics of the problem, where the Moon would be and when, and what success looked like. NSCI does not have such certainty. Perhaps most importantly it must create a future technological context with long lasting consequences and unending application. When Eugene Cernan stepped back on the ladder of Apollo 17 in 1972, he left the last footprints to impress the surface of the Moon in more than 50 years. We’ve never gone back. NSCI must build the bridge to the future of computing across which the US only goes forward. It will create the new physics, the new math (e.g., parallel algorithms), the new concepts of programming, architecture, and supportive software and infrastructures that will launch the US to the furthest frontiers of computing opportunity. But NSCI is only the first step. It is now the responsibility of this nation’s creators and users to come together in mutual supporting roles to advance this mandate in the service of the country and its people.

William Gropp and Thomas Sterling are co-editors of HPCwire’s Exascale Edition

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire