Reading List: Fault Tolerance Techniques for HPC

By Tiffany Trader

August 6, 2015

Among the chief challenges of deploying useful exascale machines, resilience looms large. Today’s error rates combined with tomorrow’s node counts cannot sustain a productive workflow without intervention. The significance of this issue has not gone unnoticed. A comprehensive collection of fault tolerance techniques are presented in one volume, called “Fault Tolerance Techniques for High-Performance Computing,” by editors Thomas Herault and Yves Robert — published last month by Springer Verlag.

“Resilience has already become a prominent issue on current large-scale platforms,” the editors write in the preface to the book. “The advent of exascale computers with millions of cores and billion-parallelism is only going to worsen the scenario. The capacity to deal with errors and faults will be a critical factor for HPC applications to be deployed efficiently.”

The reference volume provides an overview of various fault tolerance methods for HPC applications in two parts. In Part I, the editors along with colleague Jack Dongarra, focus on checkpointing, “the de-facto standard technique for resilience in HPC protocols.” The authors present the main protocols, coordinated and hierarchical, and introduce probabilistic performance models to assess these protocols. Such models are necessary, they say, for minimizing bias when dealing with future hardware, which by its definition does not yet exist. They look at checkpointing combined with fault prediction and with replication. General-purpose techniques, including checkpoint and rollback recovery protocols, as well as application-specific methods are considered, such as ABFT, or Algorithm based Fault Tolerance. There’s also a section on how to cope with silent errors.

The authors describe the problem in terms of scale, which they write is both an opportunity (“the most viable path to sustained petascale”) and a threat:

“Future platforms will enroll even more computing resources to enter the Exascale era. Current plans refer to systems either with 100,000 nodes, each equipped with 10,000 cores (the fat node scenario), or with 1,000,000 nodes, each equipped with 1,000 cores (the slim node scenario).

“Even if each node provides an individual MTBF (Mean Time Between Failures) of, say, one century, a machine with 100,000 such nodes will encounter a failure every 9 hours in average, which is larger than the execution time of many HPC applications. Worse, a machine with 1,000,000 nodes (also with a one-century MTBF) will encounter a failure every 53 minutes in average. Note that a one-century MTBF per node is an optimistic figure, given that each node is composed of several hundreds or thousands of cores.

“To further darken the picture, several types of errors need to be considered when computing at scale. In addition to classical fail-stop errors (such as hardware failures), silent errors (a.k.a silent data corruptions) must be taken into account. Contrarily to fail-stop failures, silent errors are not detected immediately, but instead after some arbitrary detection latency, which complicates methods to cope with them.”

Part II is labeled “Technical Contributions” and is organized into four chapters.

2) Errors and Faults by Ana Gaiaru and Franck Cappello

3) Fault-Tolerant MPI by Aurélien Bouteiller

4) Using Replication for Resilience on Exascale Systems by Henri Casanova, Frederic Vivien and Dounia Zaidouni

5) Energy-Aware Checkpointing Strategies by Guillaume Aupy, Anne Benoit, Mohammed El Mehdi Diori, Oliver Glück and Laurent Lefèvre

Each chapter focuses on a different aspect of resiliency at scale. Chapter five, for example, is important for spotlighting the connection that exists between the power challenge and the resilience challenge.

“[F]ault tolerance and energy consumption are interrelated: fault tolerance consumes energy and some energy reduction techniques can increase error and failure rates,” write the international team of HPC experts.

The 320-page book is available now in both hard cover, eBook and Kindle editions. Part I of the book also appears in a slightly-modified form in a May 2015 report [PDF].

Dr. Thomas Herault is a research scientist in the Innovative Computing Laboratory (ICL) at the University of Tennessee Knoxville, Tennessee. Dr. Yves Robert is a professor in the Laboratory of Parallel Computing at the Ecole Normale Supérieure de Lyon, France, and a visiting research scholar in the ICL.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire