The Importance of Team Science at XSEDE15

By Faith Singer-Villalobos, Communications Manager, Texas Advanced Computing Center

August 7, 2015

“I’m continuously inspired by her passion, her commitment and her innovative approaches for advancing research, education and the recruitment and retention for a larger and more diverse community of practitioners,” said Scott Lathrop, XSEDE director of Education and Outreach, as he introduced Dr. Ann Quiroz Gates to the podium at the 4th annual XSEDE15 conference.

First and foremost, Dr. Gates is a professor and chair of the Computer Science Department at The University of Texas at El Paso (UTEP). Importantly, she also directs the NSF-funded Cyber-ShARE Center of Excellence established in 2007. The mission of Cyber-ShARE is as follows:

To advance and integrate cyber-enhanced, collaborative, and interdisciplinary education and research through technologies that support the acquisition, exchange, analysis, integration of data, information and knowledge to solve complex problems.

Among her many other accomplishments, Dr. Gates leads the Computing Alliance for Hispanic Serving Institutions, which focuses on the recruitment, retention and advancement of Hispanics in computing; is a founding member of the National Center for Women in Information Technology; won the 2015 A. Nico Habermann Award and the 2010 Anita Borg award for Social Impact; and she was named by Hispanic Business Magazine as one of the Top 100 Influential Hispanics in 2006.

Her passions are clearly collaborative research and diversity.

“In the last two decades, there has been a surge in investments in large scale team science projects,” Gates said. “The term team science denotes a team of diverse members who conduct research in an interdisciplinary manner. The term convergent research is also often used in this context. The success of working in large, diverse teams are influenced by a variety of factors that impact efficiency, productivity and overall effectiveness.”

In her plenary talk at the XSEDE15 conference, Gates discussed what some of the experts are researching in this exciting and growing field. Her project, Cyber-ShARE, is an example of team science (aka collaborative science). “Cyber-ShARE is an interdisciplinary team across computer science, geological and environmental science. We support interdisciplinary research and collaborations across campus (at UTEP) that broaden interdisciplinary research.”

More and more research is being conducted on the importance of team science. When talking about team science Dr. Gates refers to the National Research Council’s definition of bringing together small teams and larger groups of diverse members to conduct research in an interdependent manner. There are a number of approaches in which team science can be done that can work within and across disciplines; there are also a number of terms to describe what level a team can be at in this continuum, including:

  • Transdisciplinary: integrate and transcend disciplinary approaches to generate fundamentally new conceptual frameworks, theories, models and applications
  • Interdisciplinary: integrate information, data, techniques, tools, perspectives, concepts and theories across disciplines, working jointly
  • Multidisciplinary: incorporates two or more disciplines working independently

“A team science approach is needed because of the complexity of the scientific and social challenges we’re facing in this world,” Gates said. “Addressing complex problems requires contributions from different disciplines, communities and professions.”

There is evidence in the form of publications and patents that large, diverse team efforts result in greater productivity, reach, innovation and scientific impact. “Certainly this arises from the ability of the members to draw on each other’s diverse expertise. Diversity influences how decisions are made and can positively impact the group’s effectiveness.”

However, diversity also brings challenges. Gates broke them down into three major groups: 1) Knowledge negotiation and communication; 2) Shared resources; and 3) Team effectiveness.

“Problems exist around knowledge negotiation and communication such as lack of a common vocabulary and inability to communicate about research goals and integrate the solutions around the research problem. Also, oftentimes the teams are geographically dispersed so shared resources or lack thereof must be considered. In addition, being able to identify expertise and organizational boundaries brings about challenges. Misalignment of goals can also lead to conflict. Disciplinary boundaries evolve reflecting the changing nature of goals over time,” Gates said.

So, how do you work in a group with a large number of team members?

It requires communication, coordination and high positive interdependence — members working together to accomplish a shared task. As a result, there has to be strong leadership that can assign and facilitate interdependent tasks that integrate the unique talents of the individual members to accomplish shared goals.

The NSF Extreme Science and Engineering Discovery Environment (XSEDE) project is a great example of team science. The project supports the ability of a very large team dispersed around the world to use advanced digital resources and services that are critical to the success of science.

Gates points to the XSEDE Industry Challenge program as an example.

The XSEDE Industry Challenge program brings together researchers, scientists and engineers from academia and industry with interdisciplinary backgrounds, deep knowledge in disciplines, and technical and professional skills. The program is intended to establish a new model for cooperative and collaborative research between industry and academia that transcends traditional disciplinary boundaries.

XSEDE believes with inter-industry research there is potential for future economic and societal benefit within both the industrial and academic worlds.

Gates agrees with XSEDE’s view and notes the need for more support of organizations such as XSEDE that have invested in promoting virtual, interdisciplinary communities and projects.

Team science is crucial for the success of projects that involve students, particularly those from underrepresented groups, who wish to become researchers or computer scientists. The Affinity Research Group (ARG) Model identifies students who have the capability but maybe not the competence to be involved in research. The model focuses on developing the social and team building skills needed to be successful researchers and encompasses many of the best practices recommended by experts in team science.

“The premise here is to change the culture by preparing students to effectively work in teams. Students are our future workforce — this work has been published in the Journal of Engineering Education.”

The essential elements of the ARG model are as follows:

  • Establish core purpose
  • Structure positive interdependence
  • Practice promotive interaction
  • Teach professional skills
  • Ensure individual accountability
  • Reflect on how well or poorly the group performs

“You have to work on teaching the skills,” Gates explained. “You can’t assume that students know what they need to know to work effectively. Members of a team must know what their individual role is and how it maps back to the bigger goals and sub-goals.”

In essence, to learn is to become a member of a practicing community imparting tools, language, knowledge and skills and to develop a deep commitment to the work and each other’s success. “Learning takes place in meaningful and authentic activity,” according to Gates. “The work of each individual makes a local contribution as well as a global contribution. Expert participants serve as models for professional practice for novices imparting the community’s values, tools, language and knowledge and skills through the everyday work and interaction. They develop a deep commitment to the work and each other’s development and success.”

Team science is about how the national science community can become more inclusive in what it does, and there is a lot of work being done in the science of team science. Gates concluded by emphasizing that the role of diversity in team science is extremely important and extends to age, gender, ethnicity and culture.

A PDF on “Enhancing the Effectiveness of Team Science” is available for download at http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

SDSC Supercomputers Helped Enable Safer School Reopenings

January 13, 2022

The omicron variant of Covid-19 is sending cases skyrocketing around the world. Still, many national and local governments are hesitant to disrupt society in major ways as they did in 2020, opting instead to leave school Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Voyager AI Supercomputer Gives Investigators New Deep Learning Experimental Platform

January 13, 2022

As human-caused climate change warms the planet, creating drier conditions across the Western U.S., wildfire intensity has grown. California’s wildfires over the last few years have devastated land, families, and commu Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

HPC Career Notes: January 2022 Edition

January 4, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

Climavision Targets Weather Forecasting Through HPC Cloud Bursts

January 4, 2022

If Climavision isn’t on your radar just yet, that’s understandable: the company launched from stealth just six months ago, emerging in June with a formidable $100 million in funding. Its promise: to roll out a combination of numerical weather prediction (NWP), AI, traditional weather observations, satellite data... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire