The Importance of Team Science at XSEDE15

By Faith Singer-Villalobos, Communications Manager, Texas Advanced Computing Center

August 7, 2015

“I’m continuously inspired by her passion, her commitment and her innovative approaches for advancing research, education and the recruitment and retention for a larger and more diverse community of practitioners,” said Scott Lathrop, XSEDE director of Education and Outreach, as he introduced Dr. Ann Quiroz Gates to the podium at the 4th annual XSEDE15 conference.

First and foremost, Dr. Gates is a professor and chair of the Computer Science Department at The University of Texas at El Paso (UTEP). Importantly, she also directs the NSF-funded Cyber-ShARE Center of Excellence established in 2007. The mission of Cyber-ShARE is as follows:

To advance and integrate cyber-enhanced, collaborative, and interdisciplinary education and research through technologies that support the acquisition, exchange, analysis, integration of data, information and knowledge to solve complex problems.

Among her many other accomplishments, Dr. Gates leads the Computing Alliance for Hispanic Serving Institutions, which focuses on the recruitment, retention and advancement of Hispanics in computing; is a founding member of the National Center for Women in Information Technology; won the 2015 A. Nico Habermann Award and the 2010 Anita Borg award for Social Impact; and she was named by Hispanic Business Magazine as one of the Top 100 Influential Hispanics in 2006.

Her passions are clearly collaborative research and diversity.

“In the last two decades, there has been a surge in investments in large scale team science projects,” Gates said. “The term team science denotes a team of diverse members who conduct research in an interdisciplinary manner. The term convergent research is also often used in this context. The success of working in large, diverse teams are influenced by a variety of factors that impact efficiency, productivity and overall effectiveness.”

In her plenary talk at the XSEDE15 conference, Gates discussed what some of the experts are researching in this exciting and growing field. Her project, Cyber-ShARE, is an example of team science (aka collaborative science). “Cyber-ShARE is an interdisciplinary team across computer science, geological and environmental science. We support interdisciplinary research and collaborations across campus (at UTEP) that broaden interdisciplinary research.”

More and more research is being conducted on the importance of team science. When talking about team science Dr. Gates refers to the National Research Council’s definition of bringing together small teams and larger groups of diverse members to conduct research in an interdependent manner. There are a number of approaches in which team science can be done that can work within and across disciplines; there are also a number of terms to describe what level a team can be at in this continuum, including:

  • Transdisciplinary: integrate and transcend disciplinary approaches to generate fundamentally new conceptual frameworks, theories, models and applications
  • Interdisciplinary: integrate information, data, techniques, tools, perspectives, concepts and theories across disciplines, working jointly
  • Multidisciplinary: incorporates two or more disciplines working independently

“A team science approach is needed because of the complexity of the scientific and social challenges we’re facing in this world,” Gates said. “Addressing complex problems requires contributions from different disciplines, communities and professions.”

There is evidence in the form of publications and patents that large, diverse team efforts result in greater productivity, reach, innovation and scientific impact. “Certainly this arises from the ability of the members to draw on each other’s diverse expertise. Diversity influences how decisions are made and can positively impact the group’s effectiveness.”

However, diversity also brings challenges. Gates broke them down into three major groups: 1) Knowledge negotiation and communication; 2) Shared resources; and 3) Team effectiveness.

“Problems exist around knowledge negotiation and communication such as lack of a common vocabulary and inability to communicate about research goals and integrate the solutions around the research problem. Also, oftentimes the teams are geographically dispersed so shared resources or lack thereof must be considered. In addition, being able to identify expertise and organizational boundaries brings about challenges. Misalignment of goals can also lead to conflict. Disciplinary boundaries evolve reflecting the changing nature of goals over time,” Gates said.

So, how do you work in a group with a large number of team members?

It requires communication, coordination and high positive interdependence — members working together to accomplish a shared task. As a result, there has to be strong leadership that can assign and facilitate interdependent tasks that integrate the unique talents of the individual members to accomplish shared goals.

The NSF Extreme Science and Engineering Discovery Environment (XSEDE) project is a great example of team science. The project supports the ability of a very large team dispersed around the world to use advanced digital resources and services that are critical to the success of science.

Gates points to the XSEDE Industry Challenge program as an example.

The XSEDE Industry Challenge program brings together researchers, scientists and engineers from academia and industry with interdisciplinary backgrounds, deep knowledge in disciplines, and technical and professional skills. The program is intended to establish a new model for cooperative and collaborative research between industry and academia that transcends traditional disciplinary boundaries.

XSEDE believes with inter-industry research there is potential for future economic and societal benefit within both the industrial and academic worlds.

Gates agrees with XSEDE’s view and notes the need for more support of organizations such as XSEDE that have invested in promoting virtual, interdisciplinary communities and projects.

Team science is crucial for the success of projects that involve students, particularly those from underrepresented groups, who wish to become researchers or computer scientists. The Affinity Research Group (ARG) Model identifies students who have the capability but maybe not the competence to be involved in research. The model focuses on developing the social and team building skills needed to be successful researchers and encompasses many of the best practices recommended by experts in team science.

“The premise here is to change the culture by preparing students to effectively work in teams. Students are our future workforce — this work has been published in the Journal of Engineering Education.”

The essential elements of the ARG model are as follows:

  • Establish core purpose
  • Structure positive interdependence
  • Practice promotive interaction
  • Teach professional skills
  • Ensure individual accountability
  • Reflect on how well or poorly the group performs

“You have to work on teaching the skills,” Gates explained. “You can’t assume that students know what they need to know to work effectively. Members of a team must know what their individual role is and how it maps back to the bigger goals and sub-goals.”

In essence, to learn is to become a member of a practicing community imparting tools, language, knowledge and skills and to develop a deep commitment to the work and each other’s success. “Learning takes place in meaningful and authentic activity,” according to Gates. “The work of each individual makes a local contribution as well as a global contribution. Expert participants serve as models for professional practice for novices imparting the community’s values, tools, language and knowledge and skills through the everyday work and interaction. They develop a deep commitment to the work and each other’s development and success.”

Team science is about how the national science community can become more inclusive in what it does, and there is a lot of work being done in the science of team science. Gates concluded by emphasizing that the role of diversity in team science is extremely important and extends to age, gender, ethnicity and culture.

A PDF on “Enhancing the Effectiveness of Team Science” is available for download at http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire