COSMOS Team Achieves 100x Speedup on Cosmology Code

By Tiffany Trader

August 24, 2015

One of the most popular sessions at the Intel Developer Forum last week in San Francisco, and certainly one of the most exciting from an HPC perspective, brought together two of the world’s foremost experts in parallel programming to discuss current state-of-the-art methods for leveraging parallelism on processors and coprocessors. The speakers, Intel’s Jim Jeffers and James Reinders, are also the co-editors of the just-published “High Performance Parallelism Pearls Volume Two: Multicore and Many-core Programming Approaches.”

You aren’t likely to meet two more engaging and engaged programmers who make learning about this stuff fun, even for this non-coder interloper. In writing the two volumes, the duo saw “example after example get performance and performance portability with ‘just parallel programming.'”

Many of the chapters focus on porting codes to the MIC Phi multicore processor, but in the process, the Xeon processors also accrued significant speedups, often 5x or more. As for why developers did not exploit this parallelism until they had the Phi in hand, Reinders and Jeffers refer to this phenomenon as the “inspiration of 60+ cores.”

High Performance Parallelism Pearls Vol2 coverLike the first volume, High Performance Parallelism Pearls Volume Two (Morgan Kaufmann, 2015) offers a sampling of successful programming efforts, demonstrating how to leverage parallelism from Intel Xeon and Xeon Phi processors across multiple vertical domains in science and industry. The book has been published with the spirit of knowledge sharing and all of the figures and source code are available for download to facilitate further exploration.

The IDF15 session (see slides) was focused on providing the developer audience with useful stories and examples for programming for high performance. While the editors are careful in saying they don’t have favorite chapters, the success story related in chapter 10, titled “Cosmic Microwave Background Analysis: Nested Parallelism in Practice,” stands out for its scientific accomplishment and for its programming prowess.

The chapter, which is featured on the cover of the book, highlights the work of researchers in Stephen Hawking’s group at the University of Cambridge, who achieved over a 100x speedup with optimizations carried out in the process of porting their code to the Intel Xeon Phi coprocessor (Knights Corner). The theoretical physicists at Cambridge use a simulation code called MODAL to probe the Cosmic Background Radiation (CMB), a microwave frequency background radiation left over from the Big Bang. In analyzing this data from the origin of the universe and verifying it against theoretical observations, the team is reconstructing the CMB bispectrum for the first time. What is truly remarkable is that in seeking to understand how the universe emerged out of an intense period of expansion, called inflation, the research team has found evidence of extra dimensions.

A production run using the original Modal code (unoptimized, pure MPI) takes about six hours on 512 Intel Xeon E5-4650L cores of the COSMOS SGI supercomputer. If it can be sped-up then it will greatly enhance the cross-validation process, which requires the code be run many times.

Write the authors:

“The calculation performed by Modal is a prime candidate for Intel Xeon Phi coprocessors — the inner product calculations are computationally very expensive, independent of one another, and require very little memory (with production runs using only O(100) MB of RAM and writing only O(1) MB to disk). However, the code as written does not express this calculation in a way that is conducive to the utilization of modern hardware. Our acceleration of Modal therefore has two components: tuning the code to ensure that it runs efficiently (i.e., optimization); and enabling the code to scale across vectors and many cores (i.e., modernization). Extracting performance from current and future generations of Intel Xeon processors and Intel Xeon Phi coprocessors is impossible without parallelism, and the process of optimization and modernization presented here is imperative for ensuring that COSMOS stay at the forefront of cosmological research.”

The chapter — written by James P. Briggs, James R. Fergusson, Juha Jäykkä, Simon J. Pennycook and Edward P. Shellard — details the 10-step process of optimizations, illustrated below:

Accelerating Cosmic Microwave Background Briggs speedup

Accelerating Cosmic Microwave Background Briggs code versions 1-10

The experiment was carried out using a dual socket Intel Xeon processor E5-4650L and an Intel Xeon Phi coprocessor 5110P with the Intel Composer XE 2015 (v15.0.0.090) compiler.

In addition to showcasing the potentially paradigm-changing science that is being enabled, the chapter, and a related paper from the authors, are salient teaching tools, reflecting the hallmarks of effective parallelism, including one that is sometimes omitted from discussion.

Here Jeffers begins reviewing what he and Reinders have long identified as the three most important vectors of parallelism: “data locality, that is making sure your data is structured properly for the parallelism pipeline; threading or scalability; and then vectorization, taking advantage of the syncing capability.”

“But what did we forget?” Reinders calls out.

“What we forgot,” said Jeffers, “is that you should actually analyze your code and see from an algorithm standpoint what you might be able to do to improve your code.”

“So the biggest leap here was this,” Jeffers continues. “[The developers] were moving forward with parallelism, you see they are getting pretty good gains up through [code version] six. They are moving forward. They have the original code. They did some loop modifications and then at number three, Intel MKL integration routines come in. When they hit step seven, they have been v-tuning their code, looking at the hotspots, and then boom, the MKL integration routine is the hotspot. So they picked the one that best met the inputs and outputs they wanted. It turns out they didn’t need all the power of that, the precision, etc. So they wrote their own. They used the new trapezium rule integrator and bang [performance shoots up] — so, it’s not all about the three vectors.”

“So don’t forget your algorithms,” adds Reinders, emphatically. “Do you really need the algorithm you are using? They went from a 10x to a 60x speedup in that one step, and it was an algorithm change and it affected Xeon and Xeon Phi almost equally.”

“And this is a production code,” Jeffers emphasizes, “extremely important to them, to their analysis, and really to the world in understanding the universe.”

From the COSMOS team: “We find that using a simple trapezium rule integrator combined with hand-selected sampling points (to improve accuracy in areas of interest) provides sufficient numerical accuracy to obtain a physically meaningful result, and the reduced space and time requirements of this simplified method give a speed-up of O(10x).”

A summary of the team’s conclusions appears in a presentation posted to manycore.com:

CMD Intel Cambridge Briggs Conclusions
“The total speed-up relative to the original baseline code is close to 100x on both platforms,” the authors write in chapter 10 of the new Pearls volume. “Further the results shown here use only two processor sockets or one coprocessor–by dividing the complete problem space across nodes using MPI, and then subdividing across the processor and coprocessor present in each node, the calculation can be accelerated even further. These optimizations have thus enabled COSMOS to completely change the way in which the code is used; rather than running on the entire system for hours, after careful selection of cosmological parameters, Modal can now be incorporated as part of a larger Monte Carlo pipeline to quickly evaluate the likelihood of alternative parameters.”

On the IDF15 showroom floor, Intel demonstrated a visualization of the cosmic background radiation rendered with the open-source OSPRay Ray Tracing engine running live on two pre-production Intel Knights Landing cards connected by the Omni-Path pre-production fabric. Being able to observe the Planck data with this tool allows scientists to see correlations predicted by Einstein’s theory of general relativity.

Intel COSMOS CBR visualization IDF15 1200x

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This