COSMOS Team Achieves 100x Speedup on Cosmology Code

By Tiffany Trader

August 24, 2015

One of the most popular sessions at the Intel Developer Forum last week in San Francisco, and certainly one of the most exciting from an HPC perspective, brought together two of the world’s foremost experts in parallel programming to discuss current state-of-the-art methods for leveraging parallelism on processors and coprocessors. The speakers, Intel’s Jim Jeffers and James Reinders, are also the co-editors of the just-published “High Performance Parallelism Pearls Volume Two: Multicore and Many-core Programming Approaches.”

You aren’t likely to meet two more engaging and engaged programmers who make learning about this stuff fun, even for this non-coder interloper. In writing the two volumes, the duo saw “example after example get performance and performance portability with ‘just parallel programming.'”

Many of the chapters focus on porting codes to the MIC Phi multicore processor, but in the process, the Xeon processors also accrued significant speedups, often 5x or more. As for why developers did not exploit this parallelism until they had the Phi in hand, Reinders and Jeffers refer to this phenomenon as the “inspiration of 60+ cores.”

High Performance Parallelism Pearls Vol2 coverLike the first volume, High Performance Parallelism Pearls Volume Two (Morgan Kaufmann, 2015) offers a sampling of successful programming efforts, demonstrating how to leverage parallelism from Intel Xeon and Xeon Phi processors across multiple vertical domains in science and industry. The book has been published with the spirit of knowledge sharing and all of the figures and source code are available for download to facilitate further exploration.

The IDF15 session (see slides) was focused on providing the developer audience with useful stories and examples for programming for high performance. While the editors are careful in saying they don’t have favorite chapters, the success story related in chapter 10, titled “Cosmic Microwave Background Analysis: Nested Parallelism in Practice,” stands out for its scientific accomplishment and for its programming prowess.

The chapter, which is featured on the cover of the book, highlights the work of researchers in Stephen Hawking’s group at the University of Cambridge, who achieved over a 100x speedup with optimizations carried out in the process of porting their code to the Intel Xeon Phi coprocessor (Knights Corner). The theoretical physicists at Cambridge use a simulation code called MODAL to probe the Cosmic Background Radiation (CMB), a microwave frequency background radiation left over from the Big Bang. In analyzing this data from the origin of the universe and verifying it against theoretical observations, the team is reconstructing the CMB bispectrum for the first time. What is truly remarkable is that in seeking to understand how the universe emerged out of an intense period of expansion, called inflation, the research team has found evidence of extra dimensions.

A production run using the original Modal code (unoptimized, pure MPI) takes about six hours on 512 Intel Xeon E5-4650L cores of the COSMOS SGI supercomputer. If it can be sped-up then it will greatly enhance the cross-validation process, which requires the code be run many times.

Write the authors:

“The calculation performed by Modal is a prime candidate for Intel Xeon Phi coprocessors — the inner product calculations are computationally very expensive, independent of one another, and require very little memory (with production runs using only O(100) MB of RAM and writing only O(1) MB to disk). However, the code as written does not express this calculation in a way that is conducive to the utilization of modern hardware. Our acceleration of Modal therefore has two components: tuning the code to ensure that it runs efficiently (i.e., optimization); and enabling the code to scale across vectors and many cores (i.e., modernization). Extracting performance from current and future generations of Intel Xeon processors and Intel Xeon Phi coprocessors is impossible without parallelism, and the process of optimization and modernization presented here is imperative for ensuring that COSMOS stay at the forefront of cosmological research.”

The chapter — written by James P. Briggs, James R. Fergusson, Juha Jäykkä, Simon J. Pennycook and Edward P. Shellard — details the 10-step process of optimizations, illustrated below:

Accelerating Cosmic Microwave Background Briggs speedup

Accelerating Cosmic Microwave Background Briggs code versions 1-10

The experiment was carried out using a dual socket Intel Xeon processor E5-4650L and an Intel Xeon Phi coprocessor 5110P with the Intel Composer XE 2015 (v15.0.0.090) compiler.

In addition to showcasing the potentially paradigm-changing science that is being enabled, the chapter, and a related paper from the authors, are salient teaching tools, reflecting the hallmarks of effective parallelism, including one that is sometimes omitted from discussion.

Here Jeffers begins reviewing what he and Reinders have long identified as the three most important vectors of parallelism: “data locality, that is making sure your data is structured properly for the parallelism pipeline; threading or scalability; and then vectorization, taking advantage of the syncing capability.”

“But what did we forget?” Reinders calls out.

“What we forgot,” said Jeffers, “is that you should actually analyze your code and see from an algorithm standpoint what you might be able to do to improve your code.”

“So the biggest leap here was this,” Jeffers continues. “[The developers] were moving forward with parallelism, you see they are getting pretty good gains up through [code version] six. They are moving forward. They have the original code. They did some loop modifications and then at number three, Intel MKL integration routines come in. When they hit step seven, they have been v-tuning their code, looking at the hotspots, and then boom, the MKL integration routine is the hotspot. So they picked the one that best met the inputs and outputs they wanted. It turns out they didn’t need all the power of that, the precision, etc. So they wrote their own. They used the new trapezium rule integrator and bang [performance shoots up] — so, it’s not all about the three vectors.”

“So don’t forget your algorithms,” adds Reinders, emphatically. “Do you really need the algorithm you are using? They went from a 10x to a 60x speedup in that one step, and it was an algorithm change and it affected Xeon and Xeon Phi almost equally.”

“And this is a production code,” Jeffers emphasizes, “extremely important to them, to their analysis, and really to the world in understanding the universe.”

From the COSMOS team: “We find that using a simple trapezium rule integrator combined with hand-selected sampling points (to improve accuracy in areas of interest) provides sufficient numerical accuracy to obtain a physically meaningful result, and the reduced space and time requirements of this simplified method give a speed-up of O(10x).”

A summary of the team’s conclusions appears in a presentation posted to manycore.com:

CMD Intel Cambridge Briggs Conclusions
“The total speed-up relative to the original baseline code is close to 100x on both platforms,” the authors write in chapter 10 of the new Pearls volume. “Further the results shown here use only two processor sockets or one coprocessor–by dividing the complete problem space across nodes using MPI, and then subdividing across the processor and coprocessor present in each node, the calculation can be accelerated even further. These optimizations have thus enabled COSMOS to completely change the way in which the code is used; rather than running on the entire system for hours, after careful selection of cosmological parameters, Modal can now be incorporated as part of a larger Monte Carlo pipeline to quickly evaluate the likelihood of alternative parameters.”

On the IDF15 showroom floor, Intel demonstrated a visualization of the cosmic background radiation rendered with the open-source OSPRay Ray Tracing engine running live on two pre-production Intel Knights Landing cards connected by the Omni-Path pre-production fabric. Being able to observe the Planck data with this tool allows scientists to see correlations predicted by Einstein’s theory of general relativity.

Intel COSMOS CBR visualization IDF15 1200x

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here, Monday at 8:30am PT

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire