Exploring Large Data for Scientific Discovery

By Scott Gibson, Communications Specialist, University of Tennessee

August 27, 2015

More elegant techniques combined with highly interdisciplinary, multi-scale collaboration are essential for dealing with massive amounts of information, plenary speaker says at the XSEDE15 conference.

A curse of dealing with mounds of data so massive that they require special tools, said computer scientist Valerio Pascucci, is if you look for something, you will probably find it, thus injecting bias into the analysis.

XSEDE15 pascucci-sg
Valerio Pascucci

In his plenary talk titled “Extreme Data Management Analysis and Visualization: Exploring Large Data for Science Discovery” on July 28 during the XSEDE15 conference in St. Louis, Dr. Pascucci said that getting clean, guaranteed, unbiased results in data analyses requires highly interdisciplinary, multi-scale collaboration and techniques that unify the math and computer science behind the applications used in physics, biology, and medicine.

The techniques and use cases he shared during his talk reflected about a decade and a half of getting down in the trenches to understand research efforts in disparate scientific domains, cutting through semantics, and capturing extensible mathematical foundations that could be applied in developing robust, efficient algorithms and applications.

Fewer Tools but Greater Utility

“You can build an economy of tools by deconstructing the math, looking for commonalities, and developing fewer tools that can be of use to more people,” Pascucci said in a post-talk interview. And to avoid developing biased algorithms, “you try to delay as long as possible application development.” The goal, he noted, is to create techniques that leave little room for mental shortcuts, or heuristics, and emphasize a formalized mathematical approach.

Creating those techniques, however, requires cross-pollination between, and integration of, data management and data analysis, tasks that have traditionally been performed by different communities, Pascucci pointed out. Collaboration that combines those efforts, he added, is a necessary ingredient for a successful supercomputing center or cyberinfrastructure—a dynamic ecosystem of people, advanced computing systems, data, and software.

Processing on the Fly

In managing large datasets, a platform for processing on the fly is important, said Pascucci, because researchers need to be able to make decisions under incomplete information. “This is something that people often underestimate,” he added.

One innovation that Pascucci and his colleagues at the Center for Extreme Data Management, Analysis, and Visualization (CEDMAV) at the University of Utah have developed is a framework, called ViSUS, for processing large-scale scientific data with high-performance selective queries on multiple terabytes of raw data. This data model is combined with progressive streaming techniques that allow processing on a variety of computing devices, from iPhone to simple workstations, to the input/output of parallel supercomputers. The framework has, for example, enabled the real-time streaming of massive combustion simulations from U.S. Department of Energy platforms to national laboratories.

Key Infrastructure Elements and the Big Picture

Pascucci’s talk described performance, user access, analytics, and applications as being the key elements of a computational infrastructure for scientific discovery, and it delved into each area with demonstrations and use cases—from interactive remote analysis and visualization of 6 terabytes of imaging data, to scaling in-situ analytics, and discussing data abstractions and visual metaphors, as well as examples of simulations, experiments, and data collection associated with climate, combustion, astrophysics, microscopy, Twitter, and more.

The analytics technique of topology, the area of mathematics concerned with the properties of spaces, was a subject of emphasis as a very good complement to statistics. Topology, Pascucci explained, is particularly adept at showing local and global trends and describing shapes with great precision, but the numerical principles are also extensible to the analyses of other types of data. He presented the application of a discrete topological framework for the representation and analysis of large-scale scientific data.

In the big picture of dealing with massive amounts of information, integrated management, analysis, and visualization of large data can be a catalyst for a virtuous cycle of collaborative activities involving basic research, software deployment, user support, and commercialization; and a wide spectrum of interdisciplinary collaborations can have a positive effective relative to motivating the work, providing formal theoretical approaches, and providing feedback to specific disciplines, Pascucci said.

Pascucci is the founding director of CEDMAV; a professor at the Scientific Computing and Imaging Institute, and the School of Computing, the University of Utah; a laboratory fellow at Pacific Northwest National Laboratory; and chief technology officer at Visus LLC (visus.net), a spin-off of the University of Utah.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire