Micron Steers Roadmap Around Memory Scaling Obstacles

By Tiffany Trader

August 27, 2015

In a packed session at IDF 2015 in San Francisco last week, Scott Graham, Micron’s general manager of Hybrid Memory, discussed some of the key themes occurring in the memory landscape from Micron’s perspective.

“It’s an exciting time in the industry and there’s a lot going on with memory development in system architecture and software architecture and how they combine together to provide system solutions in the server, mobile computing and embedded and networking environments,” he offered as prelude.

Noting that Micron has a portfolio that spans across platforms and sectors, Graham asked the primarily developer audience to consider how they can use these new and existing memory technologies to develop platforms to solve complex challenges out in the industry.

As the focus in computing moves from the compute bottleneck to the data bottleneck with the slow down of Moore’s law and the proliferation of data, memory and storage technologies are more important than ever. And while HPC certainly has some unique challenges and specific requirements, many concerns related to price, performance and system balance are shared across the larger computing market.

Memory is more diversified than ever and Micron has several technologies and products that are optimized for power and performance and target HPC, including Hybrid Memory Cube, solid state drives, NVDIMMs, 3D NAND, and most recently 3D XPoint, which it developed with partner Intel. The non-volatile memory process technology, unveiled last month, is being heralded by its backers as the first new memory category since the introduction of NAND flash in 1989.

3D XPoint, said Graham, previewing content to come later in his presentation, delivers 1000X the performance of regular multi-level cell (MLC) NAND and 10X higher density than a conventional volatile memory, such as DRAM.

The Update

Graham went on to deliver a technology update for the four key technologies that undergird Micron’s portfolio: DRAM, NAND, package technology (aka Hybrid Memory Cube), and new memory technology (aka 3D XPoint).

In terms of DRAM, Graham said the product continues to come along nicely with strong progress for 20nm yield. And Micron has 1Xnm development underway in Asia and 1Y/1Znm in the US.

For NAND, 16nm TLC NAND is also ramping up, but Micron will be focusing their efforts more on 3D NAND. First generation 3D NAND is on track for production now, and Micron will move to second generation next year.

Micron notes its 3D packaging technology, which has been productized in the HMC line, continues to mature. The company is currently manufacturing HMC generation 2, and will be launching HMC generation 3 over the next year to enable even higher density and bandwidth. Graham reviewed that on the networking side, it is being used in data packet processing and in data packet buffering and storage applications. For the high performance computing space, HMC is used for very high-speed, high-bandwidth technology transactions.

“To be frank, we cannot achieve the applications and system needs without developing a really good packaging technology,” said Graham. “We’re not going to achieve these bandwidth capabilities. We’re not going to achieve the reliability needs. We’re not going to overcome some of the scaling challenges without developing some of these new technology methods. If you look at Hybrid Memory Cube, that’s been the lead vehicle for Micron in order to develop these package technologies for future emerging memories.”

Graham went on to review the benefits of Micron’s in-package memory, stating that it helps to achieve bandwidth, efficiency and form factor all in one package. “If we have the ability to take DRAM and stack it on top of a logic layer and SoC and be able to control that DRAM with that SoC, it allows us to overcome scaling challenges. Being able to combine these technologies together, gives us unprecedented memory bandwidth that keeps pace with multiple CPU cores, and DRAM alone is not going to do that. This all allows for increased savings in energy/bit, density in a small form factor, higher performance and lower energy, and compelling RAS features,” Graham continues.

Challenges to the Longevity of DRAM

Graham also spoke about the impacts of DRAM process complexity, noting that as the industry scales from 50nm to 30nm and then to 20nm, complexity drives really significant upticks in the number of mask levels, by over 35 percent. The number of non-litho steps per critical mask level is up a staggering 110 percent, going from 30nm to 20nm. Clean room space per wafer output is up over 80 percent. Since acquiring Elpida in 2013, Micron says is is getting ahead of its original plan on hitting the 20nm yield. Keeping cost per bit down is a key goal and Micron believes it can enable this by facilitating the scaling path to sub-15nm DRAM. Specifically, Graham noted 1Xnm is driving over a 30 percent improvement in cost per Gb over 20nm.

DRAM is still the primary memory inside nearly every computer, from mobile phones to datacenter servers to supercomputers. But with scaling challenges, improvements have already started slowing. There are also power concerns with DRAM main memory systems accounting for about 30-50 percent of a node’s overall power consumption. These points are all highlighted in a recent journal article written by authors Jeffrey S. Vetter and Sparsh Mittal (of Oak Ridge National Laboratory). The duo then set out to examine what the future might hold for non-volatile memory systems in extreme-scale high performance computing systems.

“For DRAM, there are possible improvements from redesigning and optimizing DRAM protocols, moving DRAM closer to processors, and improved manufacturing processes,” they write. “In fact, this integration of memory onto the package in future systems may provide for performance and power benefits of about one order of magnitude [5]. Second, emerging memory technologies with different characteristics could replace or complement DRAM [13, 15, 19, 24].”

In another part of the paper, Vetter and Mittal write: “Moreover, as the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, a number of emerging memory technologies — nonvolatile memory (NVM) devices – are being investigated as an alternative for DRAM. Moving forward, these NVM devices may offer a number of solutions for HPC architectures. First, as the name, NVM, implies, these devices retain state without continuous power, which can, in turn, reduce power costs. Second, certain NVM devices can be as dense as DRAM, facilitating more memory capacity in the same physical volume. Finally, NVM, such as contemporary NAND flash memory, can be less expensive than DRAM in terms of cost per bit. Taken together, these benefits can provide opportunities for revolutionizing the design of extreme-scale HPC systems.” The full paper fleshes out each of these potential technology trends.

Micron’s General Manager of Hybrid Memory echos many of the same concerns as he discusses Micron’s outlook to the future of memory. “As we look at the future, in order to overcome the scaling challenges, specifically related to DRAM, we need to either find a better DRAM or some type of DRAM replacement,” says Graham. “So we continue to have a strong strategic investment in our roadmap enablement for storage-class memory as well as some type of DRAM or NAND replacement as well as multiple generations of 3D NAND. The strategic investment in the future of those core technologies that we’re looking at today and will continue to invest research dollars in are both resistive RAM as well as SST RAM. And SST-RAM — spin-torque magnetic random-access memory RAM — we think that that technology has a really promising opportunity to perhaps replace DRAM. So it’s DRAM-like but with non-volatile capability. As we continue to explore other opportunities, we will update the community.”

Micron’s condensed roadmap of technologies is shown below:

Micron roadmap slide IDF15

Emerging Memory and 3D-XPoint

When it comes to Micron’s emerging memory line, not surprisingly the focus is on 3D-XPoint with generation one sampling this year (although first deliveries are not promised until 2016) and a subsequent technology coming the following year. You can also see New Memory B Gen 1 positioned just a little farther out. At first all Graham would say is that “we are working on it now and it will be disclosed at a later date,” but he later confirmed that Micron’s first generation offering would be cost-optimized, while the emerging “new memory B” technology would be focused on performance and addressing some of the bigger industry challenges.

“As we develop new memory technologies and learn from XPoint and develop XPoint even further, then we will have subsequent versions of this technology and other technologies that can fit into this roadmap,” said Graham, declining to provide further details.

This slide gives a idea of where these new memories come down in terms of performance versus cost in relation to DRAM and NAND.

Micron new memory performance and cost IDF15

 

Nonvolatile memory latency is the major challenge of emerging memory in Micron’s view. As CPU technology continues to scale, memory IO continues to experience significant performance bottlenecks, so emerging memory products need to fulfill that huge latency gap. The gap continues to widen with the progression of technologies from DDR2 to DDR3 and DDR4.

Micron slide 3D XPoint positioning

Micron and Intel developed 3D XPoint to bridge this gap. As such 3D-XPoint is not intended as a replacement for DRAM or SSD (at least that’s Micron’s view) but for a target niche of applications that include in-memory database, metadata storage as well as application logging and others in verticals such as oil & gas exploration, big data analytics, financial transactions and medical research.

Graham refers to 3D-XPoint as an emerging storage class memory technology that offers DRAM-like performance with higher density and lower energy, and non-volatility with fraction of DRAM cost/bit. It is also said to be 1000x faster than NAND and the performance can be realized on PCIe or DDR buses, but there is concern about the new memory interface being proprietary. For example, Intel’s first go-to-market product, Optane, which slots inside a DDR4, is electrically compatible but will require new CPU and new extensions to access 3D XPoint. Micron has yet to reveal its first XPoint-based product, but said it would be announcing its product plans over the next couple of months.

Micron says it has multiple technologies currently in development and showing promise around XPoint and it realizes the importance of broad industry support to make an emerging memory technology successful. Further development is still needed around controller technology, which is critical to exploit characteristics of each type of memory, as well as software that is capable of taking advantage of the persistent memory semantics.

Micron 3D XPoint memory graphic IDF15For the record, Micron and Intel still aren’t saying exactly what XPoint is made of, except to reiterate that the memory element plus diode are positioned at the intersection of word and bit lines. The “memory grid” 3-D checkerboard structure maximizes cell density and allows memory cells to be addressed individually.

Micron looks at memory in a different way now, according to Graham, which is in three buckets: near, bulk and far memory. This is of course the same trend in HPC with increasing attention being paid to memory hierarchies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This