Cycle Computing Orchestrates Cancer Research on Google Cloud

By Tiffany Trader

September 10, 2015

This week HPC cloud software specialist Cycle Computing announced that its full suite of products can now be used to spin up clusters on Google’s cloud platform. As testament to the new partnership, Cycle leveraged Google Compute Engine (GCE) to run a 50,000-core cancer gene analysis workload for the Broad Institute.

As Cycle Computing explains, Broad’s Cancer Group approached them with the need to perform a highly-complex genome analysis. The researchers already had powerful processing systems in-house, but running the analysis would take months and would require extensive coordination.

The decision was made to utilize the newly-launched “preemptible virtual machine” instances on GCE to further their cancer research. Preemptible VMs are Google’s answer to competitor Amazon’s spot instances. The preemptible instances are 60-70 percent cheaper than their on-demand counterparts. The catch is that Compute Engine can terminate (preempt) these instances at any time and there are a finite number available.

For applications that are “interruption friendly” (aka fault-tolerant), preemptible VMs offer a nice discount, and as Cycle explains, its software handles resiliency, enabling the orchestration of “clustered applications at any scale.”

Both classic “big compute” jobs as well as batch processing jobs can run on preemptible instances. If some instances terminate during processing, the job slows but does not completely stop.

Cycle expects the following applications will stand to benefit from preemptible VMs:

  • Computational chemistry
  • Needle-in-a-haystack simulations
  • Financial pricing, back testing, modeling
  • Genomics, bioinformatics, proteomics
  • Insurance risk management
  • Rendering, media encoding
  • Hadoop, Spark, Redis, other IoT processing frameworks

Enabling greater access to utility-scale computing has always been the primary mission of Cycle Computing. The company has until now relied solely on Amazon’s cloud cycles, but by expanding its partner ecosystem it can better match and meet its customer needs. Recall that Broad and Google were already collaborating to develop new tools to facilitate and propel biomedical research. And in June, Broad Institute’s Genome Analysis Toolkit, or GATK, became available on Google Cloud Platform, as part of Google Genomics.

Cycle CEO Jason Stowe said Cycle doesn’t one recommend vendor over another, and that the applications cited are also well suited for AWS spot instances. “We provide tools that allow companies to benchmark their workloads on differing infrastructure and to be able to run them in production quality fashion; we stay out selection decisions. We obviously tell customers the options they have but we follow the customer.”

In general, he said, “Throughput-oriented stateless workloads tend to work well on that type of infrastructure and are definitely able to run on both Google GCE preemptible VMs and AWS spot instances.” The costs benefits can be substantial.

Broad’s Cancer Program has data sets pertaining to hundreds of cancer cell lines with information about genetic mutations, gene expression, and molecular interaction. Each level of data is massive in its own right, but exposing the hidden connections between these layers requires a comprehensive analysis. These relationships act as signposts directing the Cancer Program toward future research endeavors.

The scale of Broad’s scientific workload was not unfamiliar to Cycle, a company that prides itself on inspiring researchers to ask the “big questions” without regard to the limits of computing power. As Cycle describes it, this was a project that was at risk of not going forward if limited to available local resources.

“These types of analyses provide the clues that can lead to breakthroughs in disease research, such as cancer research, and this kind of cloud-based infrastructure helps us remove some of the local computing barriers that can stand in the way,” said Chris Dwan, acting director of information technology at the Broad Institute. “Flexible processing power allows us to think on a much larger scale.”

Revealing this map requires compute-intensive machine learning algorithms, the kind that would take months to execute on Broad’s on-premise system. The researchers already had the workload set up to run on an existing cloud-based StarCluster framework, so the challenge was to get this working on Google.

Cycle connected its CycleCloud to Google Cloud Platform, and ensured that its workload placement, data schedule, and at-scale computing capabilities were available on Google. Cycle says they were able to get this job up and running at moderate scales in 90 minutes using Cycle’s automation and orchestration tools as well as their cluster containers.

“The porting process for CycleCloud was very easy to accomplish. We were even able to simplify some of our existing code, because Google features like per-minute billing mean that we don’t have to worry about optimizing usage for hourly charges,” said Rob Futrick, chief technology officer for Cycle Computing.

Finding that the application hit its scaling sweet spot at about 50,000 cores, the Cycle team set the cluster to autoscale to 51,200 cores, requiring 3,210 16-core instances, using a mix of both n1-highmem and n1-standard types. Provisioned for less than the cost of a single server, this petascale cluster enabled Broad’s Cancer Group to complete their mapping workload in one afternoon. And as it so happens, some of the instances were preempted, but CycleCloud automatically reconfigured the cluster sans nodes, so the jobs continued.

After about six hours of computation, Broad’s map was complete. Analysis and curation will reveal the full extent of the relationships that were uncovered.

Cycle-Google-Preemptible-Instances-51200-core-CycleCloud-Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This