Cycle Computing Orchestrates Cancer Research on Google Cloud

By Tiffany Trader

September 10, 2015

This week HPC cloud software specialist Cycle Computing announced that its full suite of products can now be used to spin up clusters on Google’s cloud platform. As testament to the new partnership, Cycle leveraged Google Compute Engine (GCE) to run a 50,000-core cancer gene analysis workload for the Broad Institute.

As Cycle Computing explains, Broad’s Cancer Group approached them with the need to perform a highly-complex genome analysis. The researchers already had powerful processing systems in-house, but running the analysis would take months and would require extensive coordination.

The decision was made to utilize the newly-launched “preemptible virtual machine” instances on GCE to further their cancer research. Preemptible VMs are Google’s answer to competitor Amazon’s spot instances. The preemptible instances are 60-70 percent cheaper than their on-demand counterparts. The catch is that Compute Engine can terminate (preempt) these instances at any time and there are a finite number available.

For applications that are “interruption friendly” (aka fault-tolerant), preemptible VMs offer a nice discount, and as Cycle explains, its software handles resiliency, enabling the orchestration of “clustered applications at any scale.”

Both classic “big compute” jobs as well as batch processing jobs can run on preemptible instances. If some instances terminate during processing, the job slows but does not completely stop.

Cycle expects the following applications will stand to benefit from preemptible VMs:

  • Computational chemistry
  • Needle-in-a-haystack simulations
  • Financial pricing, back testing, modeling
  • Genomics, bioinformatics, proteomics
  • Insurance risk management
  • Rendering, media encoding
  • Hadoop, Spark, Redis, other IoT processing frameworks

Enabling greater access to utility-scale computing has always been the primary mission of Cycle Computing. The company has until now relied solely on Amazon’s cloud cycles, but by expanding its partner ecosystem it can better match and meet its customer needs. Recall that Broad and Google were already collaborating to develop new tools to facilitate and propel biomedical research. And in June, Broad Institute’s Genome Analysis Toolkit, or GATK, became available on Google Cloud Platform, as part of Google Genomics.

Cycle CEO Jason Stowe said Cycle doesn’t one recommend vendor over another, and that the applications cited are also well suited for AWS spot instances. “We provide tools that allow companies to benchmark their workloads on differing infrastructure and to be able to run them in production quality fashion; we stay out selection decisions. We obviously tell customers the options they have but we follow the customer.”

In general, he said, “Throughput-oriented stateless workloads tend to work well on that type of infrastructure and are definitely able to run on both Google GCE preemptible VMs and AWS spot instances.” The costs benefits can be substantial.

Broad’s Cancer Program has data sets pertaining to hundreds of cancer cell lines with information about genetic mutations, gene expression, and molecular interaction. Each level of data is massive in its own right, but exposing the hidden connections between these layers requires a comprehensive analysis. These relationships act as signposts directing the Cancer Program toward future research endeavors.

The scale of Broad’s scientific workload was not unfamiliar to Cycle, a company that prides itself on inspiring researchers to ask the “big questions” without regard to the limits of computing power. As Cycle describes it, this was a project that was at risk of not going forward if limited to available local resources.

“These types of analyses provide the clues that can lead to breakthroughs in disease research, such as cancer research, and this kind of cloud-based infrastructure helps us remove some of the local computing barriers that can stand in the way,” said Chris Dwan, acting director of information technology at the Broad Institute. “Flexible processing power allows us to think on a much larger scale.”

Revealing this map requires compute-intensive machine learning algorithms, the kind that would take months to execute on Broad’s on-premise system. The researchers already had the workload set up to run on an existing cloud-based StarCluster framework, so the challenge was to get this working on Google.

Cycle connected its CycleCloud to Google Cloud Platform, and ensured that its workload placement, data schedule, and at-scale computing capabilities were available on Google. Cycle says they were able to get this job up and running at moderate scales in 90 minutes using Cycle’s automation and orchestration tools as well as their cluster containers.

“The porting process for CycleCloud was very easy to accomplish. We were even able to simplify some of our existing code, because Google features like per-minute billing mean that we don’t have to worry about optimizing usage for hourly charges,” said Rob Futrick, chief technology officer for Cycle Computing.

Finding that the application hit its scaling sweet spot at about 50,000 cores, the Cycle team set the cluster to autoscale to 51,200 cores, requiring 3,210 16-core instances, using a mix of both n1-highmem and n1-standard types. Provisioned for less than the cost of a single server, this petascale cluster enabled Broad’s Cancer Group to complete their mapping workload in one afternoon. And as it so happens, some of the instances were preempted, but CycleCloud automatically reconfigured the cluster sans nodes, so the jobs continued.

After about six hours of computation, Broad’s map was complete. Analysis and curation will reveal the full extent of the relationships that were uncovered.

Cycle-Google-Preemptible-Instances-51200-core-CycleCloud-Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Help Wanted: QED-C Survey Spotlights Skills Sought by Quantum Industry

September 28, 2021

Developing an adequate workforce for the young but fast-growing quantum information sciences industry is seen as a critical element for success. Just what that means in terms of skillsets and positions is becoming cleare Read more…

Pittsburgh Supercomputer Powers Machine Learning Analysis of Rare East Asian Stamps

September 27, 2021

Setting aside the relatively recent rise of electronic signatures, personalized stamps have been a popular form of identification for formal documents in East Asia. These identifiers – easily forged, but culturally ubi Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, now is perhaps a good time to review how valuable (or not) Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to increase even as the size of the silicon on which components a Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to in Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire