Cycle Computing Orchestrates Cancer Research on Google Cloud

By Tiffany Trader

September 10, 2015

This week HPC cloud software specialist Cycle Computing announced that its full suite of products can now be used to spin up clusters on Google’s cloud platform. As testament to the new partnership, Cycle leveraged Google Compute Engine (GCE) to run a 50,000-core cancer gene analysis workload for the Broad Institute.

As Cycle Computing explains, Broad’s Cancer Group approached them with the need to perform a highly-complex genome analysis. The researchers already had powerful processing systems in-house, but running the analysis would take months and would require extensive coordination.

The decision was made to utilize the newly-launched “preemptible virtual machine” instances on GCE to further their cancer research. Preemptible VMs are Google’s answer to competitor Amazon’s spot instances. The preemptible instances are 60-70 percent cheaper than their on-demand counterparts. The catch is that Compute Engine can terminate (preempt) these instances at any time and there are a finite number available.

For applications that are “interruption friendly” (aka fault-tolerant), preemptible VMs offer a nice discount, and as Cycle explains, its software handles resiliency, enabling the orchestration of “clustered applications at any scale.”

Both classic “big compute” jobs as well as batch processing jobs can run on preemptible instances. If some instances terminate during processing, the job slows but does not completely stop.

Cycle expects the following applications will stand to benefit from preemptible VMs:

  • Computational chemistry
  • Needle-in-a-haystack simulations
  • Financial pricing, back testing, modeling
  • Genomics, bioinformatics, proteomics
  • Insurance risk management
  • Rendering, media encoding
  • Hadoop, Spark, Redis, other IoT processing frameworks

Enabling greater access to utility-scale computing has always been the primary mission of Cycle Computing. The company has until now relied solely on Amazon’s cloud cycles, but by expanding its partner ecosystem it can better match and meet its customer needs. Recall that Broad and Google were already collaborating to develop new tools to facilitate and propel biomedical research. And in June, Broad Institute’s Genome Analysis Toolkit, or GATK, became available on Google Cloud Platform, as part of Google Genomics.

Cycle CEO Jason Stowe said Cycle doesn’t one recommend vendor over another, and that the applications cited are also well suited for AWS spot instances. “We provide tools that allow companies to benchmark their workloads on differing infrastructure and to be able to run them in production quality fashion; we stay out selection decisions. We obviously tell customers the options they have but we follow the customer.”

In general, he said, “Throughput-oriented stateless workloads tend to work well on that type of infrastructure and are definitely able to run on both Google GCE preemptible VMs and AWS spot instances.” The costs benefits can be substantial.

Broad’s Cancer Program has data sets pertaining to hundreds of cancer cell lines with information about genetic mutations, gene expression, and molecular interaction. Each level of data is massive in its own right, but exposing the hidden connections between these layers requires a comprehensive analysis. These relationships act as signposts directing the Cancer Program toward future research endeavors.

The scale of Broad’s scientific workload was not unfamiliar to Cycle, a company that prides itself on inspiring researchers to ask the “big questions” without regard to the limits of computing power. As Cycle describes it, this was a project that was at risk of not going forward if limited to available local resources.

“These types of analyses provide the clues that can lead to breakthroughs in disease research, such as cancer research, and this kind of cloud-based infrastructure helps us remove some of the local computing barriers that can stand in the way,” said Chris Dwan, acting director of information technology at the Broad Institute. “Flexible processing power allows us to think on a much larger scale.”

Revealing this map requires compute-intensive machine learning algorithms, the kind that would take months to execute on Broad’s on-premise system. The researchers already had the workload set up to run on an existing cloud-based StarCluster framework, so the challenge was to get this working on Google.

Cycle connected its CycleCloud to Google Cloud Platform, and ensured that its workload placement, data schedule, and at-scale computing capabilities were available on Google. Cycle says they were able to get this job up and running at moderate scales in 90 minutes using Cycle’s automation and orchestration tools as well as their cluster containers.

“The porting process for CycleCloud was very easy to accomplish. We were even able to simplify some of our existing code, because Google features like per-minute billing mean that we don’t have to worry about optimizing usage for hourly charges,” said Rob Futrick, chief technology officer for Cycle Computing.

Finding that the application hit its scaling sweet spot at about 50,000 cores, the Cycle team set the cluster to autoscale to 51,200 cores, requiring 3,210 16-core instances, using a mix of both n1-highmem and n1-standard types. Provisioned for less than the cost of a single server, this petascale cluster enabled Broad’s Cancer Group to complete their mapping workload in one afternoon. And as it so happens, some of the instances were preempted, but CycleCloud automatically reconfigured the cluster sans nodes, so the jobs continued.

After about six hours of computation, Broad’s map was complete. Analysis and curation will reveal the full extent of the relationships that were uncovered.

Cycle-Google-Preemptible-Instances-51200-core-CycleCloud-Cluster

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This