Defining Scalable OS Requirements for Exascale and Beyond

By Robert W. Wisniewski, Chief Software Architect for Extreme Scale Computing, Intel

October 5, 2015

Over the past couple of decades two primary trends have driven system software for supercomputers to become significantly more complex. First, hardware has become more complex. Massive inter-node parallelism (100,000+ nodes), increasingly large intra-node parallelism (100+ hardware threads), wider vector units, accelerators, coprocessors, etc., have required that system software play a larger role in delivering the performance available from this new hardware. Second, applications have changed. Historically, extreme-scale high-performance computing (HPC) applications were stand-alone executables that were bulk synchronous, spatially and statically partitioned, and required minimal system services.

As the community moves towards exascale, applications are being integrated into workflows, require big data and analytics, are incorporating asynchronous capabilities, and demand an increasingly rich set of libraries, runtimes, and system services. As part of providing comprehensive system services, the compute node operating system is being integrated into the control system, which is sometimes referred to as the global operating system. While providing a complete set of system services is important, this article focuses on the challenges and needs of the Operating System (OS) on the compute node. Figure 1 shows the “left to right” model typical in HPC systems, the control system, and the node-local OS. We describe how these trends are changing the requirements and hence design of the HPC compute node OS, and describe promising directions for how these challenges will be met for exascale computing.

Wisniewski Figure1_9.29.15Background:
In addition to the above challenges, the compute node OS, hereafter just OS, must address an additional challenge. There has been a debate in the software community about whether a revolutionary or an evolutionary approach is needed to achieve exascale. We contend both are critical, and that the real challenge for system software to get to exascale and beyond is figuring out how to incorporate and support existing computation paradigms in an evolutionary manner while simultaneously supporting new revolutionary paradigms. The OS must provide this capability as well.

Historically, two designs have been used for operating systems. One is to start with a Full-Weight Kernel (FWK), typically Linux[i], and remove features so that it will scale up across more cores and out across a large cluster. Another approach is to start with a new, Light-Weight Kernel (LWK) and add functionality to provide a familiar API, typically Linux.

Requirements:
Linux, or more specifically the Linux API, including glibc and the Linux environment (/proc and /sys) is important for supporting the evolutionary aspect and for addressing the described complexity needs. There is a set of classical needs that are interrelated and must be met, including low noise, high performance, scalability for capability computing, and allowing user-space access to performance critical hardware, e.g., the network. There is a set of emerging needs that include the ability to handle asynchrony, manage power locally and globally, handle re- liability, provide for over commit of software threads, and interact effectively with runtimes. The classical needs allow applications to achieve high performance while the emerging needs provide for higher productivity and support of new programming and execution models.

A key requirement for an exascale OS kernel is nimbleness, the ability to be modified quickly and efficiently to support new hardware and to provide targeted capabilities for the HPC libraries, runtimes, and applications. This is opposite of the requirement for a general purpose OS, whose success is based on broad-based use with known interfaces. High-end HPC systems, those that will first achieve exascale and beyond, push the edge of technology out of necessity and introduce new hardware capabilities that need to be utilized effectively by high-end HPC software. As an example, a decade ago, large pages were integrated into CNK, Blue Gene’s LWK in about six months while large page support in major distributions of Linux took significantly longer and remains an on-going effort. The reason is CNK’s limited application domain allowed many simplifying assumptions. New hardware technology will be required to achieve exascale computing, and applications will need to aggressively exploit the new technology. Thus, what is needed, is an approach that while preserving the capability to support the existing interfaces (evolutionary) provides targeted and effective use of the new hardware (revolutionary) in a rapid and targeted manner (nimbleness).

ExascaleEditionThumbApproaches:
The historical approaches of adding features to an LWK or trimming an FWK have additional weaknesses when trying to simultaneously support revolutionary and evolutionary models while trying to achieve high performance in an increasingly complex and rich environment. LWKs have been shown to exhibit low noise that allows high scalability. They also have been able to target the specific needs of HPC applications allowing higher performance. As the community moves to exascale, the need to leverage specific hardware and tailor the OS service to application needs, will become more important.

Three classes of approaches are emerging to overcome these weaknesses.

  1. The first is to continue to use Linux as the base and containers to limit the interference between multiple applications thereby allowing the different applications (often a classical HPC and an emerging one, e.g., analytics or visualization) to share a node’s resources while trying to minimize the effect on the classical HPC application. Containers provide a virtual environment in Linux that provide the appearance of isolated OS instances. In the Linux community there is considerable excitement and work involving containers and HPC may be able to leverage this broader base of activity. The challenge with the container approach is that Linux remains underneath and any fundamental challenge with Linux itself remains.
  1. The second approach is virtualization. A virtualized platform on which either an LWK or a Linux kernel can run provides high performance or the features of a more general purpose OS. It is important to ensure that the cost of virtualization, especially for the LWK, is kept to a bare minimum. This approach in isolation presents problems for simultaneous use of the LWK and FWK by the application, but could be combined with the approach below.
  1. The third approach is to run multiple kernels simultaneously on a node. This has been an area of intense effort in the last several years and many efforts including McKernel, FusedOS, Nix, Tesselation, Popcorn Linux, and mOS are exploring this path. We will describe mOS as an example. The vision is to run an LWK on the majority of the cores to achieve high performance and scalability, while running Linux on one or a small number of cores to provide Linux compatibility. From the application’s perspective it achieves the performance of an LWK but appears to be Linux.

Wisniewski. Figure2_9.29.15Figure 2 depicts the fully generalized mOS architecture for the research direction we are exploring in the multiple kernels space. While the figure depicts the full generality, we expect most instantiations to run a single application on a single LWK. A standard HPC Linux runs on a given core(s); an LWK(s )runs on the rest of the cores. On any given LWK, one or more applications may run. As mentioned, the expected scenario is to run Linux on one core, and one application on one LWK on the rest of the cores. When the application makes a system call, it is routed to the OS Node (via arrow 1b) if it is a file I/O operation, or to the LWK on the core that made the call (via arrow 1a). The LWK will handle performance critical calls. If it is a call that is not implemented by the LWK, then the LWK will transfer the call to Linux (via arrow 2) to be serviced. Linux will service the call and return to the LWK, which in turn returns back to user space on the original core. With this methodology, the application achieves the high performance and scalability offered by an LWK while providing the Linux environment. We have worked out an architecture for mOS and have early prototype code that is allowing us to confirm several of the architecture decisions we made.

Conclusion:
System software for exascale systems is of necessity becoming more complex. The compute node OS, and how it supports the compute node runtimes and interacts with the global control system, will play a critical role in allowing us to achieve exascale and beyond. To be evolutionary and revolutionary simultaneously, the OS must meet the classical and emerging HPC requirements. A promising direction that several groups are exploring to address these needs is running multiple operating system kernels on a node simultaneously. While significant challenges remain and innovative work is still needed on the OS front there is confidence in being able to get the community well beyond exascale computing.

Author Bio:
Dr. Robert W. Wisniewski is an ACM Distinguished Scientist and the Chief Software Architect for Extreme Scale Computing and a Senior Principal Engineer at Intel Corporation. He has published over 60 papers in the area of high performance computing, computer systems, and system performance, and has filed over 50 patents. Before coming to Intel, he was the chief software architect for Blue Gene Research and manager of the Blue Gene and Exascale Research Software Team at the IBM T.J. Watson Research Facility, where he was an IBM Master Inventor and lead the software effort on Blue Gene/Q, which was the fastest machine in the world on the June 2012 Top 500 list, and occupied 4 of the top 10 positions. Prior to working on Blue Gene, he worked on the K42 Scalable Operating System project targeted at scalable next generation servers and the DARPA HPCS project on Continuous Program Optimization that utilizes integrated performance data to automatically improve application and system performance.  Before joining IBM Research, and after receiving a Ph.D. in Computer Science from the University of Rochester, Robert worked at Silicon Graphics on high-end parallel OS development, parallel real-time systems, and real-time performance monitoring.

[i] Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This