Defining Scalable OS Requirements for Exascale and Beyond

By Robert W. Wisniewski, Chief Software Architect for Extreme Scale Computing, Intel

October 5, 2015

Over the past couple of decades two primary trends have driven system software for supercomputers to become significantly more complex. First, hardware has become more complex. Massive inter-node parallelism (100,000+ nodes), increasingly large intra-node parallelism (100+ hardware threads), wider vector units, accelerators, coprocessors, etc., have required that system software play a larger role in delivering the performance available from this new hardware. Second, applications have changed. Historically, extreme-scale high-performance computing (HPC) applications were stand-alone executables that were bulk synchronous, spatially and statically partitioned, and required minimal system services.

As the community moves towards exascale, applications are being integrated into workflows, require big data and analytics, are incorporating asynchronous capabilities, and demand an increasingly rich set of libraries, runtimes, and system services. As part of providing comprehensive system services, the compute node operating system is being integrated into the control system, which is sometimes referred to as the global operating system. While providing a complete set of system services is important, this article focuses on the challenges and needs of the Operating System (OS) on the compute node. Figure 1 shows the “left to right” model typical in HPC systems, the control system, and the node-local OS. We describe how these trends are changing the requirements and hence design of the HPC compute node OS, and describe promising directions for how these challenges will be met for exascale computing.

Wisniewski Figure1_9.29.15Background:
In addition to the above challenges, the compute node OS, hereafter just OS, must address an additional challenge. There has been a debate in the software community about whether a revolutionary or an evolutionary approach is needed to achieve exascale. We contend both are critical, and that the real challenge for system software to get to exascale and beyond is figuring out how to incorporate and support existing computation paradigms in an evolutionary manner while simultaneously supporting new revolutionary paradigms. The OS must provide this capability as well.

Historically, two designs have been used for operating systems. One is to start with a Full-Weight Kernel (FWK), typically Linux[i], and remove features so that it will scale up across more cores and out across a large cluster. Another approach is to start with a new, Light-Weight Kernel (LWK) and add functionality to provide a familiar API, typically Linux.

Requirements:
Linux, or more specifically the Linux API, including glibc and the Linux environment (/proc and /sys) is important for supporting the evolutionary aspect and for addressing the described complexity needs. There is a set of classical needs that are interrelated and must be met, including low noise, high performance, scalability for capability computing, and allowing user-space access to performance critical hardware, e.g., the network. There is a set of emerging needs that include the ability to handle asynchrony, manage power locally and globally, handle re- liability, provide for over commit of software threads, and interact effectively with runtimes. The classical needs allow applications to achieve high performance while the emerging needs provide for higher productivity and support of new programming and execution models.

A key requirement for an exascale OS kernel is nimbleness, the ability to be modified quickly and efficiently to support new hardware and to provide targeted capabilities for the HPC libraries, runtimes, and applications. This is opposite of the requirement for a general purpose OS, whose success is based on broad-based use with known interfaces. High-end HPC systems, those that will first achieve exascale and beyond, push the edge of technology out of necessity and introduce new hardware capabilities that need to be utilized effectively by high-end HPC software. As an example, a decade ago, large pages were integrated into CNK, Blue Gene’s LWK in about six months while large page support in major distributions of Linux took significantly longer and remains an on-going effort. The reason is CNK’s limited application domain allowed many simplifying assumptions. New hardware technology will be required to achieve exascale computing, and applications will need to aggressively exploit the new technology. Thus, what is needed, is an approach that while preserving the capability to support the existing interfaces (evolutionary) provides targeted and effective use of the new hardware (revolutionary) in a rapid and targeted manner (nimbleness).

ExascaleEditionThumbApproaches:
The historical approaches of adding features to an LWK or trimming an FWK have additional weaknesses when trying to simultaneously support revolutionary and evolutionary models while trying to achieve high performance in an increasingly complex and rich environment. LWKs have been shown to exhibit low noise that allows high scalability. They also have been able to target the specific needs of HPC applications allowing higher performance. As the community moves to exascale, the need to leverage specific hardware and tailor the OS service to application needs, will become more important.

Three classes of approaches are emerging to overcome these weaknesses.

  1. The first is to continue to use Linux as the base and containers to limit the interference between multiple applications thereby allowing the different applications (often a classical HPC and an emerging one, e.g., analytics or visualization) to share a node’s resources while trying to minimize the effect on the classical HPC application. Containers provide a virtual environment in Linux that provide the appearance of isolated OS instances. In the Linux community there is considerable excitement and work involving containers and HPC may be able to leverage this broader base of activity. The challenge with the container approach is that Linux remains underneath and any fundamental challenge with Linux itself remains.
  1. The second approach is virtualization. A virtualized platform on which either an LWK or a Linux kernel can run provides high performance or the features of a more general purpose OS. It is important to ensure that the cost of virtualization, especially for the LWK, is kept to a bare minimum. This approach in isolation presents problems for simultaneous use of the LWK and FWK by the application, but could be combined with the approach below.
  1. The third approach is to run multiple kernels simultaneously on a node. This has been an area of intense effort in the last several years and many efforts including McKernel, FusedOS, Nix, Tesselation, Popcorn Linux, and mOS are exploring this path. We will describe mOS as an example. The vision is to run an LWK on the majority of the cores to achieve high performance and scalability, while running Linux on one or a small number of cores to provide Linux compatibility. From the application’s perspective it achieves the performance of an LWK but appears to be Linux.

Wisniewski. Figure2_9.29.15Figure 2 depicts the fully generalized mOS architecture for the research direction we are exploring in the multiple kernels space. While the figure depicts the full generality, we expect most instantiations to run a single application on a single LWK. A standard HPC Linux runs on a given core(s); an LWK(s )runs on the rest of the cores. On any given LWK, one or more applications may run. As mentioned, the expected scenario is to run Linux on one core, and one application on one LWK on the rest of the cores. When the application makes a system call, it is routed to the OS Node (via arrow 1b) if it is a file I/O operation, or to the LWK on the core that made the call (via arrow 1a). The LWK will handle performance critical calls. If it is a call that is not implemented by the LWK, then the LWK will transfer the call to Linux (via arrow 2) to be serviced. Linux will service the call and return to the LWK, which in turn returns back to user space on the original core. With this methodology, the application achieves the high performance and scalability offered by an LWK while providing the Linux environment. We have worked out an architecture for mOS and have early prototype code that is allowing us to confirm several of the architecture decisions we made.

Conclusion:
System software for exascale systems is of necessity becoming more complex. The compute node OS, and how it supports the compute node runtimes and interacts with the global control system, will play a critical role in allowing us to achieve exascale and beyond. To be evolutionary and revolutionary simultaneously, the OS must meet the classical and emerging HPC requirements. A promising direction that several groups are exploring to address these needs is running multiple operating system kernels on a node simultaneously. While significant challenges remain and innovative work is still needed on the OS front there is confidence in being able to get the community well beyond exascale computing.

Author Bio:
Dr. Robert W. Wisniewski is an ACM Distinguished Scientist and the Chief Software Architect for Extreme Scale Computing and a Senior Principal Engineer at Intel Corporation. He has published over 60 papers in the area of high performance computing, computer systems, and system performance, and has filed over 50 patents. Before coming to Intel, he was the chief software architect for Blue Gene Research and manager of the Blue Gene and Exascale Research Software Team at the IBM T.J. Watson Research Facility, where he was an IBM Master Inventor and lead the software effort on Blue Gene/Q, which was the fastest machine in the world on the June 2012 Top 500 list, and occupied 4 of the top 10 positions. Prior to working on Blue Gene, he worked on the K42 Scalable Operating System project targeted at scalable next generation servers and the DARPA HPCS project on Continuous Program Optimization that utilizes integrated performance data to automatically improve application and system performance.  Before joining IBM Research, and after receiving a Ph.D. in Computer Science from the University of Rochester, Robert worked at Silicon Graphics on high-end parallel OS development, parallel real-time systems, and real-time performance monitoring.

[i] Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This