Stepping Up to the Life Science Storage System Challenge

By Louis Vistola

October 5, 2015

Storage and data management have become the perhaps the most challenging computational bottlenecks in life sciences (LS) research. The volume and diversity of data generated by modern life science lab instruments and the varying requirements of analysis applications make creating effective solutions far from trivial. What’s more, where LS was once adequately served by conventional cluster technology, HPC is now becoming important – one estimate is 25% of bench scientists will require HPC resources in 2015.

Currently, the emphasis is on sequence data analysis although imaging data is quickly joining the fray. Sometimes the sequence data is generated in one place and largely kept there – think of major biomedical research and sequencing centers such as the Broad Institute and Wellcome Trust Sanger Institute. Other times, the data is generated by thousands of far-flung researchers whose results must be pooled to optimize LS community benefit – think of the Cancer Genome Hub (CGHub) at UC Santa Cruz, which now holds about 2.3 petabytes of data, all contributed from researchers spread worldwide.

Given the twin imperatives of collaboration and faster analysis turnaround times, optimizing storage system performance is a high priority. Complicating the effort is the fact that genomics analysis workflows are themselves complicated and each step can be IO or CPU intensive and involve repetitively reading and writing many large files to and from disk. Beyond the need to scale storage capacity to support what can be petabytes of data in a single laboratory or organization, there is usually a need for a high-performance distributed file system to take advantage of today’s high core density, multi-server compute clusters.

Broadly speaking, accelerating genomics analysis pipelines can be tricky. CPU and memory issues are typically easier to resolve. Disk throughput is often the most difficult variable to tweak and researchers report it’s not always clear which combination of disk technology and distributed file system (NFS, GlusterFS, Lustre, PanFS, etc.) will produce the best results. IO is especially problematic.

Alignment and de-duplication, for example, is usually a multi-step disk intensive process: Perform alignment and write BAM file to disk, sort original BAM file to disk, deduplicate BAM file to disk. Researchers are using a full arsenal of approaches – powerful hardware, parallelization, algorithm refinement, storage system optimization – to accelerate throughput. Simply put, storage infrastructures must address two general areas:

  • The infrastructure must be capable of handling the volume of data being generated by today’s lab equipment. Modern DNA sequencers already produce up to a few hundred TB per instrument per year, a rate that is expected to grow 100-fold as capacities increase and more annotation data is captured. With many genomics workflows, many terabytes of data must routinely be moved from the DNA sequencing machines that generate the data to the computational component that performs the DNA alignment, assembly, and subsequent genomic analysis.
  • The analysis process, multiple tools are used on the data in its various forms. Each of the tools has different IO characteristics. For example, in a typical workflow, the output data from a sequencer might be prepared in some way, partitioning it into smaller working packages for an initial analysis. This type of operation involves many read/writes and is IO bound. The output from that step might then be used to perform a read alignment. This operation is CPU-bound. Finally, the work done on the smaller packages of data needs to be sorted and merged, aggregating the results into one file. This process requires many temporary file writes and is IO bound.

One the compute side, there are a variety of solutions available to help meet the raw processing demands of today’s genomics analysis workflows. Organizations can select high performance servers with multi-core, multi-threaded processors; systems with large amounts of shared memory; analytics nodes with lots of high-speed flash; systems that make use of in-memory processing; and servers that take advantage of co-processors or other forms of hardware-based acceleration.

One the storage side, the choices can be more limiting. Life sciences code, as noted earlier, tends to be IO bound. There are large numbers of rapid, read/write calls. The throughput demands per core can easily exceed practical IO limitations. Given the size and number of files being moved in genomic analysis workflows, traditional NAS storage solutions and NFS-based file systems frequently don’t scale out adequately and slow performance. High performance parallel file systems such as Lustre and the General Parallel File System (GPFS) are often needed.

Determining the right file system for use isn’t always straightforward. One example of this challenge is a project undertaken by a major biomedical research organization seeking to conduct whole genome sequencing (WGS) analysis on 1,500 subjects; that translated into 110 terabytes (TB) of data with each whole genome sample accounting for about 75GB. Samples were processed in batches of 75 to optimize throughput, requiring about 5TB of data to be read and written to disk multiple times during the 96 hour processing workflow, with intermediate files adding another 5TB to the I/O load.

Many of processing steps were IO intensive and involved reading and writing large 100GB BAM files to and from disk. These did not scale well. Several strategies were tried (e.g., upgrading the network bandwidth, minimizing IO operations, improving workload splitting). Despite the I/O improvements, significant bottlenecks remained in running disk intensive processes at scale. Specifically the post-alignment processing slowed down on NFS shared file systems due to a high number of concurrent file writes. In this instance, switching to Lustre delivered a threefold improvement in write performance.

Conversely Purdue chose GPFS during an upgrade of its cyberinfrastructure which serves a large community of very diverse domains.

“We have researchers pulling in data from instruments to a scratch file and this may be the sole repository of their data for several months while they are analyzing it, cleaning the data, and haven’t yet put it into archives,” said Mike Shuey, research infrastructure architect at Purdue. “We are taking advantage of a couple of GPFS RAS (reliability, availability, and serviceability) features, specifically data replication and snapshot capabilities to protect against site-wide failure and to protect against accidental data deletion. While Lustre is great for other workloads – and we use it in some places – it doesn’t have those sorts of features right now,” Vertical Focus: HPC in BioITsaid Shuey.

LS processing requirements – a major portion of Purdue’s research activity – can be problematic in a mixed-use environment. Shuey noted LS workflows often have millions of tiny files whose IO access requirements can interfere with the more typical IO stream of simulation applications; larger files in a mechanical engineering simulation, for example, can be slowed by accesses to these millions of tiny files from a life sciences workflow. Purdue adopted deployed DataDirect Networks acceleration technology to help cope with this issue.

Two relatively new technologies that continue to gain traction are Hadoop and iRODS.

hadoop_logo.jpgHadoop, of course, uses a distributed file system and framework (MapReduce) to break large data sets into chunks, to distribute/store (Map) those chunks to nodes in a cluster, and to gather (Reduce) results following computation. Hadoop’s distinguishing feature is it automatically stores the chunks of data on the same nodes on which they will be processed. This strategy of co-locating of data and processing power (proximity computing) significantly accelerates performance.

It also turns out that Hadoop architecture is a good choice for many life sciences applications. This is largely because so much of life sciences data is semi- or unstructured file-based data and ideally suited for ‘embarrassingly parallel’ computation. Moreover, the use of commodity hardware (e.g. Linux cluster) keeps cost down, and little or no hardware modification is required. Conversely issues remain, say some observers.

“[W]hile genome scientists have adopted the concept of MapReduce for parallelizing IO, they have not embraced the Hadoop ecosystem. For example, the popular Genome Analysis Toolkit (GATK) uses a proprietary MapReduce implementation that can scale vertically but not horizontally…Efforts exist for adapting existing genomics data structures to Hadoop, but these don’t support the full range of analytic requirements,” noted Alan Day (principal data scientist) and Sungwook Yoon (data scientist) at vendor MapR, in a blog post during the Strata & Hadoop World conference, held earlier this month.

MapR’s approach is to implement an end-to-end analysis pipeline based on GATK and running on Hadoop. “The benefit of combining GATK and Hadoop is two-fold. First, Hadoop provides a more cost-effective solution than a traditional HPC+SAN substrate. Second, Hadoop applications are much easier for software engineers to design and scale,” they wrote, adding the MapR solution follows Hadoop and the GATK best practices. They argue results can be generated on easily available hardware and users can expect immediate ROI by moving existing GATK use cases to Hadoop.

iRODS-Logo.2015iRODS solves a different challenge. It is a data grid technology that essentially puts a unified namespace on data files, regardless of where those files are physically located. You may have files in four or five different storage systems, but to the user it appears as one directory tree. iRODS also allows setting enforcement rules on any access to the data or submission of data. For example, if someone entered data into the system, that might trigger a rule to replicate the data to another system and compress it at the same time. Access protection rules based on metadata about a file can be set.[1]

At the Renaissance Computing Institute (RENCI) of the University of North Carolina, iRODS has been used in several aspects of its genomics analysis pipeline. When analytical pipelines are processing the data they also register that data into iRODS, according to Charles Schmitt, director of informatics, RENCI[iv]. At the end of the pipeline, the data exists on disks and is registered into iRODS. Anyone wanting to use the data must come in through iRODS to get the data; this allows RENCI to set policies on access and data use.

Broad benefits cited by the iRODS consortium include:

  • iRODS enables data discovery using a metadata catalog that describes every file, every directory, and every storage resource in the data grid.
  • iRODS automates data workflows, with a rule engine that permits any action to be initiated by any trigger on any server or client in the grid.
  • iRODS enables secure collaboration, so users only need to log in to their home grid to access data hosted on a remote grid.
  • iRODS implements data virtualization, allowing access to distributed storage assets under a unified namespace, and freeing organizations from getting locked in to single-vendor storage solutions.

It’s worth noting that RENCI has been an important participant in iRODS consortium whose members include, for example, Seagate (NASDAQ: STX), DDN, Novartis (NYSE: NVS), IBM(NYSE: IBM), Wellcome Trust Sanger Institute, and EMC (NYSE: EMC).

 

[1] RENCI white paper, Life sciences at RENCI: Big Data IT to manage, decipher, and inform, http://www.emc.com/collateral/white-papers/h11692-life-sciences-renci-big-data-manage-info-wp.pdf

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major shakeups -- China still has the top two spots locked with th Read more…

By Tiffany Trader

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This