Stepping Up to the Life Science Storage System Challenge

By Louis Vistola

October 5, 2015

Storage and data management have become the perhaps the most challenging computational bottlenecks in life sciences (LS) research. The volume and diversity of data generated by modern life science lab instruments and the varying requirements of analysis applications make creating effective solutions far from trivial. What’s more, where LS was once adequately served by conventional cluster technology, HPC is now becoming important – one estimate is 25% of bench scientists will require HPC resources in 2015.

Currently, the emphasis is on sequence data analysis although imaging data is quickly joining the fray. Sometimes the sequence data is generated in one place and largely kept there – think of major biomedical research and sequencing centers such as the Broad Institute and Wellcome Trust Sanger Institute. Other times, the data is generated by thousands of far-flung researchers whose results must be pooled to optimize LS community benefit – think of the Cancer Genome Hub (CGHub) at UC Santa Cruz, which now holds about 2.3 petabytes of data, all contributed from researchers spread worldwide.

Given the twin imperatives of collaboration and faster analysis turnaround times, optimizing storage system performance is a high priority. Complicating the effort is the fact that genomics analysis workflows are themselves complicated and each step can be IO or CPU intensive and involve repetitively reading and writing many large files to and from disk. Beyond the need to scale storage capacity to support what can be petabytes of data in a single laboratory or organization, there is usually a need for a high-performance distributed file system to take advantage of today’s high core density, multi-server compute clusters.

Broadly speaking, accelerating genomics analysis pipelines can be tricky. CPU and memory issues are typically easier to resolve. Disk throughput is often the most difficult variable to tweak and researchers report it’s not always clear which combination of disk technology and distributed file system (NFS, GlusterFS, Lustre, PanFS, etc.) will produce the best results. IO is especially problematic.

Alignment and de-duplication, for example, is usually a multi-step disk intensive process: Perform alignment and write BAM file to disk, sort original BAM file to disk, deduplicate BAM file to disk. Researchers are using a full arsenal of approaches – powerful hardware, parallelization, algorithm refinement, storage system optimization – to accelerate throughput. Simply put, storage infrastructures must address two general areas:

  • The infrastructure must be capable of handling the volume of data being generated by today’s lab equipment. Modern DNA sequencers already produce up to a few hundred TB per instrument per year, a rate that is expected to grow 100-fold as capacities increase and more annotation data is captured. With many genomics workflows, many terabytes of data must routinely be moved from the DNA sequencing machines that generate the data to the computational component that performs the DNA alignment, assembly, and subsequent genomic analysis.
  • The analysis process, multiple tools are used on the data in its various forms. Each of the tools has different IO characteristics. For example, in a typical workflow, the output data from a sequencer might be prepared in some way, partitioning it into smaller working packages for an initial analysis. This type of operation involves many read/writes and is IO bound. The output from that step might then be used to perform a read alignment. This operation is CPU-bound. Finally, the work done on the smaller packages of data needs to be sorted and merged, aggregating the results into one file. This process requires many temporary file writes and is IO bound.

One the compute side, there are a variety of solutions available to help meet the raw processing demands of today’s genomics analysis workflows. Organizations can select high performance servers with multi-core, multi-threaded processors; systems with large amounts of shared memory; analytics nodes with lots of high-speed flash; systems that make use of in-memory processing; and servers that take advantage of co-processors or other forms of hardware-based acceleration.

One the storage side, the choices can be more limiting. Life sciences code, as noted earlier, tends to be IO bound. There are large numbers of rapid, read/write calls. The throughput demands per core can easily exceed practical IO limitations. Given the size and number of files being moved in genomic analysis workflows, traditional NAS storage solutions and NFS-based file systems frequently don’t scale out adequately and slow performance. High performance parallel file systems such as Lustre and the General Parallel File System (GPFS) are often needed.

Determining the right file system for use isn’t always straightforward. One example of this challenge is a project undertaken by a major biomedical research organization seeking to conduct whole genome sequencing (WGS) analysis on 1,500 subjects; that translated into 110 terabytes (TB) of data with each whole genome sample accounting for about 75GB. Samples were processed in batches of 75 to optimize throughput, requiring about 5TB of data to be read and written to disk multiple times during the 96 hour processing workflow, with intermediate files adding another 5TB to the I/O load.

Many of processing steps were IO intensive and involved reading and writing large 100GB BAM files to and from disk. These did not scale well. Several strategies were tried (e.g., upgrading the network bandwidth, minimizing IO operations, improving workload splitting). Despite the I/O improvements, significant bottlenecks remained in running disk intensive processes at scale. Specifically the post-alignment processing slowed down on NFS shared file systems due to a high number of concurrent file writes. In this instance, switching to Lustre delivered a threefold improvement in write performance.

Conversely Purdue chose GPFS during an upgrade of its cyberinfrastructure which serves a large community of very diverse domains.

“We have researchers pulling in data from instruments to a scratch file and this may be the sole repository of their data for several months while they are analyzing it, cleaning the data, and haven’t yet put it into archives,” said Mike Shuey, research infrastructure architect at Purdue. “We are taking advantage of a couple of GPFS RAS (reliability, availability, and serviceability) features, specifically data replication and snapshot capabilities to protect against site-wide failure and to protect against accidental data deletion. While Lustre is great for other workloads – and we use it in some places – it doesn’t have those sorts of features right now,” Vertical Focus: HPC in BioITsaid Shuey.

LS processing requirements – a major portion of Purdue’s research activity – can be problematic in a mixed-use environment. Shuey noted LS workflows often have millions of tiny files whose IO access requirements can interfere with the more typical IO stream of simulation applications; larger files in a mechanical engineering simulation, for example, can be slowed by accesses to these millions of tiny files from a life sciences workflow. Purdue adopted deployed DataDirect Networks acceleration technology to help cope with this issue.

Two relatively new technologies that continue to gain traction are Hadoop and iRODS.

hadoop_logo.jpgHadoop, of course, uses a distributed file system and framework (MapReduce) to break large data sets into chunks, to distribute/store (Map) those chunks to nodes in a cluster, and to gather (Reduce) results following computation. Hadoop’s distinguishing feature is it automatically stores the chunks of data on the same nodes on which they will be processed. This strategy of co-locating of data and processing power (proximity computing) significantly accelerates performance.

It also turns out that Hadoop architecture is a good choice for many life sciences applications. This is largely because so much of life sciences data is semi- or unstructured file-based data and ideally suited for ‘embarrassingly parallel’ computation. Moreover, the use of commodity hardware (e.g. Linux cluster) keeps cost down, and little or no hardware modification is required. Conversely issues remain, say some observers.

“[W]hile genome scientists have adopted the concept of MapReduce for parallelizing IO, they have not embraced the Hadoop ecosystem. For example, the popular Genome Analysis Toolkit (GATK) uses a proprietary MapReduce implementation that can scale vertically but not horizontally…Efforts exist for adapting existing genomics data structures to Hadoop, but these don’t support the full range of analytic requirements,” noted Alan Day (principal data scientist) and Sungwook Yoon (data scientist) at vendor MapR, in a blog post during the Strata & Hadoop World conference, held earlier this month.

MapR’s approach is to implement an end-to-end analysis pipeline based on GATK and running on Hadoop. “The benefit of combining GATK and Hadoop is two-fold. First, Hadoop provides a more cost-effective solution than a traditional HPC+SAN substrate. Second, Hadoop applications are much easier for software engineers to design and scale,” they wrote, adding the MapR solution follows Hadoop and the GATK best practices. They argue results can be generated on easily available hardware and users can expect immediate ROI by moving existing GATK use cases to Hadoop.

iRODS-Logo.2015iRODS solves a different challenge. It is a data grid technology that essentially puts a unified namespace on data files, regardless of where those files are physically located. You may have files in four or five different storage systems, but to the user it appears as one directory tree. iRODS also allows setting enforcement rules on any access to the data or submission of data. For example, if someone entered data into the system, that might trigger a rule to replicate the data to another system and compress it at the same time. Access protection rules based on metadata about a file can be set.[1]

At the Renaissance Computing Institute (RENCI) of the University of North Carolina, iRODS has been used in several aspects of its genomics analysis pipeline. When analytical pipelines are processing the data they also register that data into iRODS, according to Charles Schmitt, director of informatics, RENCI[iv]. At the end of the pipeline, the data exists on disks and is registered into iRODS. Anyone wanting to use the data must come in through iRODS to get the data; this allows RENCI to set policies on access and data use.

Broad benefits cited by the iRODS consortium include:

  • iRODS enables data discovery using a metadata catalog that describes every file, every directory, and every storage resource in the data grid.
  • iRODS automates data workflows, with a rule engine that permits any action to be initiated by any trigger on any server or client in the grid.
  • iRODS enables secure collaboration, so users only need to log in to their home grid to access data hosted on a remote grid.
  • iRODS implements data virtualization, allowing access to distributed storage assets under a unified namespace, and freeing organizations from getting locked in to single-vendor storage solutions.

It’s worth noting that RENCI has been an important participant in iRODS consortium whose members include, for example, Seagate (NASDAQ: STX), DDN, Novartis (NYSE: NVS), IBM(NYSE: IBM), Wellcome Trust Sanger Institute, and EMC (NYSE: EMC).

 

[1] RENCI white paper, Life sciences at RENCI: Big Data IT to manage, decipher, and inform, http://www.emc.com/collateral/white-papers/h11692-life-sciences-renci-big-data-manage-info-wp.pdf

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire