The Revolution in the Lab is Overwhelming IT

By John Russell

October 5, 2015

Sifting through the vast treasure trove of data spilling from modern life science instruments is perhaps the defining challenge for biomedical research today. NIH, for example, generates about 1.5PB of data a month, and that excludes NIH-funded external research. Not only have DNA sequencers become extraordinarily powerful, but also they have proliferated in size and type, from big workhorse instruments like the Illumina HiSeq X Ten, down to reliable bench-top models (MiSeq) suitable for small labs, and there are now in advanced development USB-stick sized devices that plug into a USB port.

“The flood of sequence data, human and non-human that may impact human health, is certainly growing and in need of being integrated, mined, and understood. Further, there are emerging technologies in imaging and high resolution structure studies that will be generating a huge amount of data that will need to be analyzed, integrated, and understood,”[i] said Jack Collins, Director of the Advanced Biomedical Computing Center at the Frederick National Laboratory for Cancer Research, NCI.

Here are just a few of the many feeder streams to the data deluge:

  • DNA Sequencers. An Illumina (NASDAQ: ILMN) top-of-the-line HiSeq Ten Series can generate a full human genome in just 18 hours (and generate 3TB) and deliver 18000 genomes in a year. File size for a single whole genome sample may exceed 75GB.
  • Live cell imaging. High throughput imaging in which robots screen hundreds of millions of compounds on live cells typically generate tens of terabytes weekly.
  • Confocal imaging. Scanning 100s of tissue section, with sometimes many scans per section, each with 20-40 layers and multiple fluorescent channels can produce on the order of 10TB weekly.
  • Structural Data. Advanced investigation into form and structure is driving huge and diverse datasets derived from many sources.

Broadly, the flood of data from various LS instruments stresses virtually every part of most research computational environment (cpu, network, storage, system and application software). Indeed, important research and clinical work can be delayed or not attempted because although generating the data is feasible, the time required to perform the data analysis can be impractical. Faced with these situations, research organizations are forced to retool the IT infrastructure.

“Bench science is changing month to month while IT infrastructure is refreshed every 2-7 years. Right now IT is not part of the conversation [with life scientists] and running to catch up,” noted Ari Berman, GM of Government Services, the BioTeam consulting firm and a member of Tabor EnterpriseHPC Conference Advisory Board.

The sheer volume of data is only one aspect of the problem. Diversity in files and data types further complicates efforts to build the “right” infrastructure. Berman noted in a recent presentation that life sciences generates massive text files, massive binary files, large directories (many millions of files), large files ~600Gb and very many small files ~30kb or less. Workflows likewise vary. Sequencing alignment and variant calling offer one set of challenges; pathway simulation presents another; creating 3D models – perhaps of the brain and using those to perform detailed neurosurgery with real-time analytic feedback

“Data piles up faster than it ever has before. In fact, a single new sequencer can typically generate terabytes of data a day. And as a result, an organization or lab with multiple sequencers is capable of producing petabytes of data in a year. The data from the sequencers must be analyzed and visualized using third-party tools. And then it must be managed over time,” said Berman.

Human Brain ProjectAn excellent, though admittedly high-end, example of the growing complexity of computational tools being contemplated and developed in life science research is presented by the European Union Human Brain Project[ii] (HBP). Among its lofty goals are creation of six information and communications technology (ICT) platforms intended to enable “large-scale collaboration and data sharing, reconstruction of the brain at different biological scales, federated analysis of clinical data to map diseases of the brain, and development of brain-inspired computing systems.”

The elements of the planned HPC platform include[iii]:

  • Neuroinformatics: a data repository, including brain atlases.
  • Brain Simulation: building ICT models and simulations of brains and brain components.
  • Medical Informatics: bringing together information on brain diseases.
  • Neuromorphic Computing: ICT that mimics the functioning of the brain.
  • Neurorobotics: testing brain models and simulations in virtual environments.
  • HPC Infrastructure: hardware and software to support the other Platforms.

(Tellingly HBP organizers have recognized the limited computational expertise of many biomedical researchers and also plan to develop technical support and training programs for users of the platforms.)

There is broad agreement in the life sciences research community that there is no single best HPC infrastructure to handle the many LS use cases. The best approach is to build for the dominant use cases. Even here, said Berman, building HPC environments for LS is risky, “The challenge is to design systems today that can support unknown research requirements over many years.” And of course, this all must be accomplished in a cost-constrained environment.

Vertical Focus: HPC in BioIT“Some lab instruments know how to submit jobs to clusters. You need heterogeneous systems. Homogeneous clusters don’t work well in life sciences because of the varying uses cases. Newer clusters are kind of a mix and match of things we have fat nodes with tons of cpus and thin nodes with really fast cpus, [for example],” said Berman.

Just one genome, depending upon the type of sequencing and the coverage, can generate 100GB of data to manage. Capturing, analyzing, storing, and presenting the accumulating data requires a hybrid HPC infrastructure that blends traditional cluster computing with emerging tools such as iRODS (Integrated Rule-Oriented Data System) and Hadoop. Unsurprisingly the HPC infrastructure is always a work in progress

Here’s a snapshot of the two of the most common genomic analysis pipelines:

  1. DNA Sequencing. DNA extracted from tissue samples is run through the high-throughput NGS instruments. These modern sequencers generate hundreds of millions of short DNA sequences for each sample, which must then be ‘assembled’ into proper order to determine the genome. Researchers use parallelized computational workflows to assemble the genome and perform quality control on the reassembly—fixing errors in the reassembly.
  2. Variant Calling. DNA variations (SNPs, haplotypes, indels, etc) for an individual are detected, often using large patient populations to help resolve ambiguities in the individual’s sequence data. Data may be organized into a hybrid solution that uses a relational database to store canonical variations, high-performance file systems to hold data, and a Hadoop-based approach for specialized data-intensive analysis. Links to public and private databases help researchers identify the impact of variations including, for example, whether variants have known associations with clinically relevant conditions.

The point is that life science research – and soon healthcare delivery – has been transformed by productivity leaps in the lab that now are creating immense computational challenges. (next Part 2: Storage Strategies)

[i] Presented on a panel at Leverage Big Data conference, March 2015; http://www.leveragebigdata.com;

[ii] https://www.humanbrainproject.eu/

[iii] https://www.humanbrainproject.eu/discover/the-project/platforms;jsessionid=emae995mioyqxt99x2a14ljg

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last t Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire