The Revolution in the Lab is Overwhelming IT

By John Russell

October 5, 2015

Sifting through the vast treasure trove of data spilling from modern life science instruments is perhaps the defining challenge for biomedical research today. NIH, for example, generates about 1.5PB of data a month, and that excludes NIH-funded external research. Not only have DNA sequencers become extraordinarily powerful, but also they have proliferated in size and type, from big workhorse instruments like the Illumina HiSeq X Ten, down to reliable bench-top models (MiSeq) suitable for small labs, and there are now in advanced development USB-stick sized devices that plug into a USB port.

“The flood of sequence data, human and non-human that may impact human health, is certainly growing and in need of being integrated, mined, and understood. Further, there are emerging technologies in imaging and high resolution structure studies that will be generating a huge amount of data that will need to be analyzed, integrated, and understood,”[i] said Jack Collins, Director of the Advanced Biomedical Computing Center at the Frederick National Laboratory for Cancer Research, NCI.

Here are just a few of the many feeder streams to the data deluge:

  • DNA Sequencers. An Illumina (NASDAQ: ILMN) top-of-the-line HiSeq Ten Series can generate a full human genome in just 18 hours (and generate 3TB) and deliver 18000 genomes in a year. File size for a single whole genome sample may exceed 75GB.
  • Live cell imaging. High throughput imaging in which robots screen hundreds of millions of compounds on live cells typically generate tens of terabytes weekly.
  • Confocal imaging. Scanning 100s of tissue section, with sometimes many scans per section, each with 20-40 layers and multiple fluorescent channels can produce on the order of 10TB weekly.
  • Structural Data. Advanced investigation into form and structure is driving huge and diverse datasets derived from many sources.

Broadly, the flood of data from various LS instruments stresses virtually every part of most research computational environment (cpu, network, storage, system and application software). Indeed, important research and clinical work can be delayed or not attempted because although generating the data is feasible, the time required to perform the data analysis can be impractical. Faced with these situations, research organizations are forced to retool the IT infrastructure.

“Bench science is changing month to month while IT infrastructure is refreshed every 2-7 years. Right now IT is not part of the conversation [with life scientists] and running to catch up,” noted Ari Berman, GM of Government Services, the BioTeam consulting firm and a member of Tabor EnterpriseHPC Conference Advisory Board.

The sheer volume of data is only one aspect of the problem. Diversity in files and data types further complicates efforts to build the “right” infrastructure. Berman noted in a recent presentation that life sciences generates massive text files, massive binary files, large directories (many millions of files), large files ~600Gb and very many small files ~30kb or less. Workflows likewise vary. Sequencing alignment and variant calling offer one set of challenges; pathway simulation presents another; creating 3D models – perhaps of the brain and using those to perform detailed neurosurgery with real-time analytic feedback

“Data piles up faster than it ever has before. In fact, a single new sequencer can typically generate terabytes of data a day. And as a result, an organization or lab with multiple sequencers is capable of producing petabytes of data in a year. The data from the sequencers must be analyzed and visualized using third-party tools. And then it must be managed over time,” said Berman.

Human Brain ProjectAn excellent, though admittedly high-end, example of the growing complexity of computational tools being contemplated and developed in life science research is presented by the European Union Human Brain Project[ii] (HBP). Among its lofty goals are creation of six information and communications technology (ICT) platforms intended to enable “large-scale collaboration and data sharing, reconstruction of the brain at different biological scales, federated analysis of clinical data to map diseases of the brain, and development of brain-inspired computing systems.”

The elements of the planned HPC platform include[iii]:

  • Neuroinformatics: a data repository, including brain atlases.
  • Brain Simulation: building ICT models and simulations of brains and brain components.
  • Medical Informatics: bringing together information on brain diseases.
  • Neuromorphic Computing: ICT that mimics the functioning of the brain.
  • Neurorobotics: testing brain models and simulations in virtual environments.
  • HPC Infrastructure: hardware and software to support the other Platforms.

(Tellingly HBP organizers have recognized the limited computational expertise of many biomedical researchers and also plan to develop technical support and training programs for users of the platforms.)

There is broad agreement in the life sciences research community that there is no single best HPC infrastructure to handle the many LS use cases. The best approach is to build for the dominant use cases. Even here, said Berman, building HPC environments for LS is risky, “The challenge is to design systems today that can support unknown research requirements over many years.” And of course, this all must be accomplished in a cost-constrained environment.

Vertical Focus: HPC in BioIT“Some lab instruments know how to submit jobs to clusters. You need heterogeneous systems. Homogeneous clusters don’t work well in life sciences because of the varying uses cases. Newer clusters are kind of a mix and match of things we have fat nodes with tons of cpus and thin nodes with really fast cpus, [for example],” said Berman.

Just one genome, depending upon the type of sequencing and the coverage, can generate 100GB of data to manage. Capturing, analyzing, storing, and presenting the accumulating data requires a hybrid HPC infrastructure that blends traditional cluster computing with emerging tools such as iRODS (Integrated Rule-Oriented Data System) and Hadoop. Unsurprisingly the HPC infrastructure is always a work in progress

Here’s a snapshot of the two of the most common genomic analysis pipelines:

  1. DNA Sequencing. DNA extracted from tissue samples is run through the high-throughput NGS instruments. These modern sequencers generate hundreds of millions of short DNA sequences for each sample, which must then be ‘assembled’ into proper order to determine the genome. Researchers use parallelized computational workflows to assemble the genome and perform quality control on the reassembly—fixing errors in the reassembly.
  2. Variant Calling. DNA variations (SNPs, haplotypes, indels, etc) for an individual are detected, often using large patient populations to help resolve ambiguities in the individual’s sequence data. Data may be organized into a hybrid solution that uses a relational database to store canonical variations, high-performance file systems to hold data, and a Hadoop-based approach for specialized data-intensive analysis. Links to public and private databases help researchers identify the impact of variations including, for example, whether variants have known associations with clinically relevant conditions.

The point is that life science research – and soon healthcare delivery – has been transformed by productivity leaps in the lab that now are creating immense computational challenges. (next Part 2: Storage Strategies)

[i] Presented on a panel at Leverage Big Data conference, March 2015;;



Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theoretical physicist, cosmologist, author and director of resea Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Alibaba Cloud Launches ‘Bare Metal,’ HPC Instances in Europe

February 28, 2018

Alibaba, the e-commerce giant from China, is taking a run at AWS in the global public cloud computing market with new offerings aimed at the surging demand for Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This