The Revolution in the Lab is Overwhelming IT

By John Russell

October 5, 2015

Sifting through the vast treasure trove of data spilling from modern life science instruments is perhaps the defining challenge for biomedical research today. NIH, for example, generates about 1.5PB of data a month, and that excludes NIH-funded external research. Not only have DNA sequencers become extraordinarily powerful, but also they have proliferated in size and type, from big workhorse instruments like the Illumina HiSeq X Ten, down to reliable bench-top models (MiSeq) suitable for small labs, and there are now in advanced development USB-stick sized devices that plug into a USB port.

“The flood of sequence data, human and non-human that may impact human health, is certainly growing and in need of being integrated, mined, and understood. Further, there are emerging technologies in imaging and high resolution structure studies that will be generating a huge amount of data that will need to be analyzed, integrated, and understood,”[i] said Jack Collins, Director of the Advanced Biomedical Computing Center at the Frederick National Laboratory for Cancer Research, NCI.

Here are just a few of the many feeder streams to the data deluge:

  • DNA Sequencers. An Illumina (NASDAQ: ILMN) top-of-the-line HiSeq Ten Series can generate a full human genome in just 18 hours (and generate 3TB) and deliver 18000 genomes in a year. File size for a single whole genome sample may exceed 75GB.
  • Live cell imaging. High throughput imaging in which robots screen hundreds of millions of compounds on live cells typically generate tens of terabytes weekly.
  • Confocal imaging. Scanning 100s of tissue section, with sometimes many scans per section, each with 20-40 layers and multiple fluorescent channels can produce on the order of 10TB weekly.
  • Structural Data. Advanced investigation into form and structure is driving huge and diverse datasets derived from many sources.

Broadly, the flood of data from various LS instruments stresses virtually every part of most research computational environment (cpu, network, storage, system and application software). Indeed, important research and clinical work can be delayed or not attempted because although generating the data is feasible, the time required to perform the data analysis can be impractical. Faced with these situations, research organizations are forced to retool the IT infrastructure.

“Bench science is changing month to month while IT infrastructure is refreshed every 2-7 years. Right now IT is not part of the conversation [with life scientists] and running to catch up,” noted Ari Berman, GM of Government Services, the BioTeam consulting firm and a member of Tabor EnterpriseHPC Conference Advisory Board.

The sheer volume of data is only one aspect of the problem. Diversity in files and data types further complicates efforts to build the “right” infrastructure. Berman noted in a recent presentation that life sciences generates massive text files, massive binary files, large directories (many millions of files), large files ~600Gb and very many small files ~30kb or less. Workflows likewise vary. Sequencing alignment and variant calling offer one set of challenges; pathway simulation presents another; creating 3D models – perhaps of the brain and using those to perform detailed neurosurgery with real-time analytic feedback

“Data piles up faster than it ever has before. In fact, a single new sequencer can typically generate terabytes of data a day. And as a result, an organization or lab with multiple sequencers is capable of producing petabytes of data in a year. The data from the sequencers must be analyzed and visualized using third-party tools. And then it must be managed over time,” said Berman.

Human Brain ProjectAn excellent, though admittedly high-end, example of the growing complexity of computational tools being contemplated and developed in life science research is presented by the European Union Human Brain Project[ii] (HBP). Among its lofty goals are creation of six information and communications technology (ICT) platforms intended to enable “large-scale collaboration and data sharing, reconstruction of the brain at different biological scales, federated analysis of clinical data to map diseases of the brain, and development of brain-inspired computing systems.”

The elements of the planned HPC platform include[iii]:

  • Neuroinformatics: a data repository, including brain atlases.
  • Brain Simulation: building ICT models and simulations of brains and brain components.
  • Medical Informatics: bringing together information on brain diseases.
  • Neuromorphic Computing: ICT that mimics the functioning of the brain.
  • Neurorobotics: testing brain models and simulations in virtual environments.
  • HPC Infrastructure: hardware and software to support the other Platforms.

(Tellingly HBP organizers have recognized the limited computational expertise of many biomedical researchers and also plan to develop technical support and training programs for users of the platforms.)

There is broad agreement in the life sciences research community that there is no single best HPC infrastructure to handle the many LS use cases. The best approach is to build for the dominant use cases. Even here, said Berman, building HPC environments for LS is risky, “The challenge is to design systems today that can support unknown research requirements over many years.” And of course, this all must be accomplished in a cost-constrained environment.

Vertical Focus: HPC in BioIT“Some lab instruments know how to submit jobs to clusters. You need heterogeneous systems. Homogeneous clusters don’t work well in life sciences because of the varying uses cases. Newer clusters are kind of a mix and match of things we have fat nodes with tons of cpus and thin nodes with really fast cpus, [for example],” said Berman.

Just one genome, depending upon the type of sequencing and the coverage, can generate 100GB of data to manage. Capturing, analyzing, storing, and presenting the accumulating data requires a hybrid HPC infrastructure that blends traditional cluster computing with emerging tools such as iRODS (Integrated Rule-Oriented Data System) and Hadoop. Unsurprisingly the HPC infrastructure is always a work in progress

Here’s a snapshot of the two of the most common genomic analysis pipelines:

  1. DNA Sequencing. DNA extracted from tissue samples is run through the high-throughput NGS instruments. These modern sequencers generate hundreds of millions of short DNA sequences for each sample, which must then be ‘assembled’ into proper order to determine the genome. Researchers use parallelized computational workflows to assemble the genome and perform quality control on the reassembly—fixing errors in the reassembly.
  2. Variant Calling. DNA variations (SNPs, haplotypes, indels, etc) for an individual are detected, often using large patient populations to help resolve ambiguities in the individual’s sequence data. Data may be organized into a hybrid solution that uses a relational database to store canonical variations, high-performance file systems to hold data, and a Hadoop-based approach for specialized data-intensive analysis. Links to public and private databases help researchers identify the impact of variations including, for example, whether variants have known associations with clinically relevant conditions.

The point is that life science research – and soon healthcare delivery – has been transformed by productivity leaps in the lab that now are creating immense computational challenges. (next Part 2: Storage Strategies)

[i] Presented on a panel at Leverage Big Data conference, March 2015; http://www.leveragebigdata.com;

[ii] https://www.humanbrainproject.eu/

[iii] https://www.humanbrainproject.eu/discover/the-project/platforms;jsessionid=emae995mioyqxt99x2a14ljg

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This