The Revolution in the Lab is Overwhelming IT

By John Russell

October 5, 2015

Sifting through the vast treasure trove of data spilling from modern life science instruments is perhaps the defining challenge for biomedical research today. NIH, for example, generates about 1.5PB of data a month, and that excludes NIH-funded external research. Not only have DNA sequencers become extraordinarily powerful, but also they have proliferated in size and type, from big workhorse instruments like the Illumina HiSeq X Ten, down to reliable bench-top models (MiSeq) suitable for small labs, and there are now in advanced development USB-stick sized devices that plug into a USB port.

“The flood of sequence data, human and non-human that may impact human health, is certainly growing and in need of being integrated, mined, and understood. Further, there are emerging technologies in imaging and high resolution structure studies that will be generating a huge amount of data that will need to be analyzed, integrated, and understood,”[i] said Jack Collins, Director of the Advanced Biomedical Computing Center at the Frederick National Laboratory for Cancer Research, NCI.

Here are just a few of the many feeder streams to the data deluge:

  • DNA Sequencers. An Illumina (NASDAQ: ILMN) top-of-the-line HiSeq Ten Series can generate a full human genome in just 18 hours (and generate 3TB) and deliver 18000 genomes in a year. File size for a single whole genome sample may exceed 75GB.
  • Live cell imaging. High throughput imaging in which robots screen hundreds of millions of compounds on live cells typically generate tens of terabytes weekly.
  • Confocal imaging. Scanning 100s of tissue section, with sometimes many scans per section, each with 20-40 layers and multiple fluorescent channels can produce on the order of 10TB weekly.
  • Structural Data. Advanced investigation into form and structure is driving huge and diverse datasets derived from many sources.

Broadly, the flood of data from various LS instruments stresses virtually every part of most research computational environment (cpu, network, storage, system and application software). Indeed, important research and clinical work can be delayed or not attempted because although generating the data is feasible, the time required to perform the data analysis can be impractical. Faced with these situations, research organizations are forced to retool the IT infrastructure.

“Bench science is changing month to month while IT infrastructure is refreshed every 2-7 years. Right now IT is not part of the conversation [with life scientists] and running to catch up,” noted Ari Berman, GM of Government Services, the BioTeam consulting firm and a member of Tabor EnterpriseHPC Conference Advisory Board.

The sheer volume of data is only one aspect of the problem. Diversity in files and data types further complicates efforts to build the “right” infrastructure. Berman noted in a recent presentation that life sciences generates massive text files, massive binary files, large directories (many millions of files), large files ~600Gb and very many small files ~30kb or less. Workflows likewise vary. Sequencing alignment and variant calling offer one set of challenges; pathway simulation presents another; creating 3D models – perhaps of the brain and using those to perform detailed neurosurgery with real-time analytic feedback

“Data piles up faster than it ever has before. In fact, a single new sequencer can typically generate terabytes of data a day. And as a result, an organization or lab with multiple sequencers is capable of producing petabytes of data in a year. The data from the sequencers must be analyzed and visualized using third-party tools. And then it must be managed over time,” said Berman.

Human Brain ProjectAn excellent, though admittedly high-end, example of the growing complexity of computational tools being contemplated and developed in life science research is presented by the European Union Human Brain Project[ii] (HBP). Among its lofty goals are creation of six information and communications technology (ICT) platforms intended to enable “large-scale collaboration and data sharing, reconstruction of the brain at different biological scales, federated analysis of clinical data to map diseases of the brain, and development of brain-inspired computing systems.”

The elements of the planned HPC platform include[iii]:

  • Neuroinformatics: a data repository, including brain atlases.
  • Brain Simulation: building ICT models and simulations of brains and brain components.
  • Medical Informatics: bringing together information on brain diseases.
  • Neuromorphic Computing: ICT that mimics the functioning of the brain.
  • Neurorobotics: testing brain models and simulations in virtual environments.
  • HPC Infrastructure: hardware and software to support the other Platforms.

(Tellingly HBP organizers have recognized the limited computational expertise of many biomedical researchers and also plan to develop technical support and training programs for users of the platforms.)

There is broad agreement in the life sciences research community that there is no single best HPC infrastructure to handle the many LS use cases. The best approach is to build for the dominant use cases. Even here, said Berman, building HPC environments for LS is risky, “The challenge is to design systems today that can support unknown research requirements over many years.” And of course, this all must be accomplished in a cost-constrained environment.

Vertical Focus: HPC in BioIT“Some lab instruments know how to submit jobs to clusters. You need heterogeneous systems. Homogeneous clusters don’t work well in life sciences because of the varying uses cases. Newer clusters are kind of a mix and match of things we have fat nodes with tons of cpus and thin nodes with really fast cpus, [for example],” said Berman.

Just one genome, depending upon the type of sequencing and the coverage, can generate 100GB of data to manage. Capturing, analyzing, storing, and presenting the accumulating data requires a hybrid HPC infrastructure that blends traditional cluster computing with emerging tools such as iRODS (Integrated Rule-Oriented Data System) and Hadoop. Unsurprisingly the HPC infrastructure is always a work in progress

Here’s a snapshot of the two of the most common genomic analysis pipelines:

  1. DNA Sequencing. DNA extracted from tissue samples is run through the high-throughput NGS instruments. These modern sequencers generate hundreds of millions of short DNA sequences for each sample, which must then be ‘assembled’ into proper order to determine the genome. Researchers use parallelized computational workflows to assemble the genome and perform quality control on the reassembly—fixing errors in the reassembly.
  2. Variant Calling. DNA variations (SNPs, haplotypes, indels, etc) for an individual are detected, often using large patient populations to help resolve ambiguities in the individual’s sequence data. Data may be organized into a hybrid solution that uses a relational database to store canonical variations, high-performance file systems to hold data, and a Hadoop-based approach for specialized data-intensive analysis. Links to public and private databases help researchers identify the impact of variations including, for example, whether variants have known associations with clinically relevant conditions.

The point is that life science research – and soon healthcare delivery – has been transformed by productivity leaps in the lab that now are creating immense computational challenges. (next Part 2: Storage Strategies)

[i] Presented on a panel at Leverage Big Data conference, March 2015; http://www.leveragebigdata.com;

[ii] https://www.humanbrainproject.eu/

[iii] https://www.humanbrainproject.eu/discover/the-project/platforms;jsessionid=emae995mioyqxt99x2a14ljg

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major shakeups -- China still has the top two spots locked with th Read more…

By Tiffany Trader

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This