NNSA Taps Penguin Computing for 7-9 Petaflops ‘Open’ HPC Cluster

By Tiffany Trader

October 21, 2015

Per a newly-inked contract with Penguin Computing, the Department of Energy’s National Nuclear Security Administration (NNSA) is set to receive its third joint procurement of a commodity supercomputing environment to replace its 2011-2012 era systems. The new installation, called the Tri-Laboratory Commodity Technology System 1, or CTS-1, replaces the the Tri-Lab Linux Capacity Cluster 2 (TLCC2). Where TLCC2 provided an aggregate total computing capability of three petaflops, the Penguin clusters will aggregate 7-9 petaflops and will employ the forthcoming Broadwell-EP processors.

The three-year contract, valued at $39 million, provides NNSA’s Advanced Simulation and Computing (ASC) program with Penguin’s Open Compute-derived Tundra Extreme Scale (ES) series architecture to support national security workloads at Los Alamos, Sandia and Lawrence Livermore national laboratories. The selection process primarily focused on “performance features, supplier attributes, and price” according to the procurement guidelines established by the ASC.

As pointed out by the NNSA, advances in computational technology have brought down the cost of HPC systems from approximately $100,000,000 per teraflops in 1995 to less than $17,000 per teraflops in 2011-2012 (a factor of nearly 6,000) to to less than $5,000 per teraflops today, a factor of 20,000.

This is one of the biggest wins for Penguin Computing and also serves as validation for the open hardware model. “CTS-1 shows how the Open Compute and Open Rack design elements can be applied to high-performance computing and deliver similar benefits as its original development for Internet companies,” said Philip Pokorny, chief technology officer at Penguin Computing.

The Tundra ES system leverages the form factors that Facebook introduced with Open Compute and adapts and extends them for HPC with the aim of increased density, efficiency and serviceability benefits. For example, where Facebook’s standard is to fit three servers in two rack units, Tundra squeezes three dual-processor servers per horizontal rack unit, essentially doubling density. This arrangement accomodates up to 96 nodes per rack with the associated shared power infrastructure and fabric/networking switches. With a high-power shelf from Emerson Network Power, Penguin can offer up to 52.8kW power per rack (although current equipment maxes out below this max limit) compared to the current OCP limit of ~12kW.

Liquid cooling technology will be supplied by Asetek (more on that here). A liquid heat exchange is an important element in dense rack designs, according to Penguin, especially at high-altitude settings where cooling is challenged. A Penguin Computing spokesperson said the company is seeing more interest in liquid cooling as the technology reaches an economic tipping point in satisfying the need for denser computing and energy-efficiency.

On the storage side, there is a small amount of storage in management nodes on the Tundra ES racks, and Tundra can support integrated storage for say more data-optimized workloads, but as it stands now, the DOE will be handling its monolithic storage needs in a separate procurement (which we will be following up on).

In line with its mission to provide simulation capabilities and computational resources for the Stockpile Stewardship Program (SSP), the ASC runs acquisition programs for two kinds of computing platform classes: Commodity Technology systems (CTS) and Advanced Technology systems (ATS). The contract with Penguin represents the first CTS procurement, while Cray was selected to supply the first ATS system, Trinity, currently under construction at the Strategic Computing Center of Los Alamos National Laboratory.

The CTS model is designed to maximize the purchasing power of the Tri-Laboratories by employing standardized hardware and software environments across the three labs. “By deploying a common hardware environment multiple times at all three laboratory sites over multiple government fiscal years, the time and cost associated with any one cluster is greatly reduced,” explains the RFP documents.

Penguin Computing Relion 1930e
      “Relion 1930e server sled”

Advanced Technology Systems, by contrast (according to NNSA/ASC Program Office documents) are “the vanguards of high performance computing platform market and incorporate features that, if successful, will become future commodity technologies. These large, first-of-a-kind systems will require application software modifications in order to take full advantage of exceptional capabilities offered by new technology.”

Dan Dowling, vice president of engineering services at Penguin Computing, further explained that the contract is based on the notion, developed by NNSA, of a “scalable unit,” or SU, a smallish-cluster that ranges from about 150 to 200 nodes and can be connected, like legos, to form much larger systems. The original proposal called for an architecture with the “flexibility to aggregate between 1 to 24 SUs into a single cluster, potentially accessible to a single job.” The modular approach is intended to streamline the building, shipping, installation and acceptance processes, but it also makes it so that each lab can configure the SUs into clusters according to mission needs.

The SU method produces a common Linux cluster hardware environment for the Tri-Laboratories, which eases administration, minimizes software changes and maximizes availability to end-users. At the same time as the ASC stands to benefit from a familiar environment, they also want to be able to leverage ongoing technology improvements. To this point, Penguin said that there is discussion about supplying the Tri-Lab partners with additional racks that make use of heterogenous computing elements like GPGPUs, Phi coprocessors and ARM chips, but the initial contract specifies only standard x86 parts. This is the aforementioned Broadwell-EP line, which Penguin will soon plug into its Relion 1930e servers “for cost-effective and reliable system performance.” Tundra in fact was designed on Intel Scalable System framework principles.

The HPC clusters will be delivered to the laboratories between April 2016 and September 2018. Each scalable unit represents approximately 200 teraflops of computing power, which at 7 petaflops total, translates into roughly 35 SUs (about 70 racks). That means there’s at least a half teraflops performance per processor. Likely the real number is higher, but Intel hasn’t disclosed specs on the processor yet. According to Intel’s last public comment on the subject, the chip launch was pushed from Q4 2015 to Q1 2016.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This