‘ASCI’ Turns 20; David Turek Offers IBM Retrospective

By John Russell

October 21, 2015

Twenty years ago President Bill Clinton announced that the United States would maintain its U.S. nuclear arsenal without nuclear explosive testing. The challenge, of course, was how to actually carry out such a daunting task. The instruments were the tremendously successful Stockpile Stewardship Program (SSP) and Accelerated Strategic Computing Initiative which together drove much of supercomputing in the U.S. for sometime.

Today, the White House and DOE marked the anniversary with an event including comments from Secretary of State John Kerry, Secretary of Energy Ernest Moniz, and two panels featuring the directors of the three national labs involved at ASCI’s start – Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Strictly speaking, ASCI transitioned into becoming the Advanced Simulation and Computing (ASC) program in 2005 which is broadly carrying on the mission.

It’s worth noting how far supercomputing has come. Writing in 1999 on the modeling and simulation challenges ASCI faced in monitoring aging stockpiles and assessing new designs, Paul Messina, then with California Institute of Technology and DOE and now Director of Science, Argonne Leadership Computing Facility, noted:

“The goal of ASCI, however, is not a pipe dream. With funding from ASCI, the computer industry has already installed three computer systems, one at Sandia National Laboratories (built by Intel), one at Los Alamos National Laboratory (LANL) (an SGI-Cray computer), and another at Lawrence Livermore National Laboratory (LLNL) (an IBM computer), that can sustain more than 1 teraflops on real applications. At the time they were installed, each of these computers was as much as 20 times more powerful than those at the National Science Foundation (NSF) Supercomputer Centers (the Partnerships for Advanced Computational Infrastructure), the National Energy Research Supercomputing Center, and other laboratories. And this is only the beginning. By 2002, the computer industry will deliver a system 10 times more powerful than these two systems and, in between, another computer will be delivered that has three times the power of the LANL/LLNL computers. By the year 2004—only 5 years from now—computers capable of 100 trillion operations per second will be available.”[i]

Today of course, top supercomputers are petaflops machines and the new National Strategic Computing Initiative plots a course towards achieving exascale computing.

Today’s event featured remarks by: Moniz; Kerry; Deputy Secretary of Energy, Dr. Elizabeth Sherwood-Randall; NNSA Administrator, Lt. Gen. (Retired) Frank G. Klotz; NNSA Principal Deputy Administrator, Madelyn Creedon. There were also panel discussions:

  • Panel I (“From Cold War to No-Testing Regime – Challenges and Opportunities). Panel members: Charles Curtis, Senior Advisor, Center for Strategic and International Studies; Brian McKeon, Principal Deputy Undersecretary of Defense for Policy, DoD; and Franklin Miller, Principal, Scowcroft Group. Moderator:Madelyn Creedon
  • Panel II (“Assessing the Current Stockpile and Looking Forward 20 Years”). Panel members: Bill Goldstein, Director, Lawrence Livermore National Laboratory; Jill Hruby, Director, Sandia National Laboratories; and Charles McMillan, Director, Los Alamos National Laboratory. Moderator: General C. Robert Kehler (ret.), Former Commander, U.S. Strategic Command

It seems likely the timing of this event, at least in part, was intended to showcase U.S. strength in rigorous nuclear program assessment as implementation of the international Iran nuclear disarmament treaty unfolds. Indeed, Kerry’s comments were largely focused on the recent Iran deal.

dave-turek-headshotThat said, David Turek, vice president of exascale computing at IBM, posted a more personal retrospective blog around ASCI and its galvanizing effect on supercomputing and on IBM and Big Blue’s role in the program. Below is text from Turek’s blog.

What it Takes to Reinvent Supercomputing–Over and Over Again

I’m not usually a big fan of anniversaries (except my wedding day, of course), but I make an exception when it comes to IBM’s collaboration with the US Government on supercomputing.

Today is the 20th anniversary of the Accelerated Strategic Computing Initiative–a Department of Energy program that has safeguarded America’s nuclear weapon arsenal and, and the same time, helped IBM assert ongoing leadership in this most demanding of computer domains.

With help from National Laboratories scientists, teams of IBMers have produced five generations of supercomputers–repeatedly ranking among the fastest machines in the world. The journey led us to where we are today: developing a sixth generation of computers, data-centric systems designed from the ground up for the era of big data and cognitive computing.

The program was also instrumental in IBM’s rebound after the company’s near-collapse in the early 1990s.

I remember the day the original ASCI contract was signed. IBM and DOE people had gathered in a conference room at the IBM headquarters north of New York City. Unexpectedly, Lou Gerstner, IBM’s then-new CEO, popped in and gave off-the-cuff remarks. I remember him saying, “IBM is all about solving hard problems. This is the hardest problem there is. We’re all in.”

I was sitting in a chair and he was standing behind me. He put his hands on my shoulders and said, “Here’s the guy who will do it.”

Gulp.

The task of creating computers that are capable of simulating nuclear explosions so countries don’t have to test with actual bombs turned out to be difficult indeed.

The first years were the toughest.

I had been with IBM for nearly 20 years by then and had experience in both hardware and software development. Most relevantly, I had been involved in an effort to transform IBM mainframes into supercomputers. That didn’t pan out, but in the process we learned a lot about what it would take to build high-performance computers. We had relaunched our supercomputing effort with a new technology strategy just before we engaged with the Department of Energy.

To ramp up the ASCI project development team quickly, I cherry-picked people from IBM’s offices and labs all over the Hudson Valley. Some of them were green, in their 20s, but they had the nerve to rethink computing.

We made a series of radical choices. We adapted processors and systems technologies that IBM had developed for its scientific workstation business. UNIX would be the operating system. We had to invent new networking to hook all the processors together. And we were one of the first groups at IBM to use open source software. We had to move too quickly to code everything ourselves.

We also had to develop a new process for developing and manufacturing such complex systems–with thousands, and, later, millions, of processors.

With each new generation, the requirements increased dramatically. The first machines produced 3 teraflops of computing performance, or 3 trillion floating point operations per second. The current generation produces 20 petaflops; 20 quadrillion operations per second. That meant we had to invent not just individual technologies but whole new approaches to computing.

IBM_Blue_Gene_P_supercomputerFor instance, in the early 2000s, IBM Research and scientists at Lawrence Livermore National Laboratory teamed up to create a new supercomputing architecture which harnessed millions of simple, low-powered processors. The first systems based on this architecture, called Blue Gene/L, were incredibly energy efficient and exceeded the performance of Japan’s Earth Simulator by greater than a factor of 10, helping the US recapture leadership in supercomputing.

Today, we’re developing yet another generation of supercomputers for the National Laboratories. They’re based on the principle that the only way to efficiently handle today’s enormous quantities of data is to rethink computing once again. We have to bring the processing to the data rather follow the conventional approach of transmitting all of the data to central processing units.

When we first proposed this solution, we were practically laughed out of the room. But, today, data-centric computing is becoming accepted across the tech industry as the way to go forward.

Through the ASCI project, I learned lessons that I think are critical for any large-scale development project in the computer industry. First, you must assemble an integrated team of specialists in all of the hardware and software technologies. Second, you must see the big picture. Don’t think of a server computer in isolation. Plan so you can integrate servers and other components in large systems capable of taking on the most demanding computing tasks.

I guess there’s one more critical lesson I learned from this tremendous experience: recruit bright and fearless people and ask them to do nearly impossible things. Chances are, they’ll rise to the challenge.

[i] Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop. http://www.ncbi.nlm.nih.gov/books/NBK44974/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This