‘ASCI’ Turns 20; David Turek Offers IBM Retrospective

By John Russell

October 21, 2015

Twenty years ago President Bill Clinton announced that the United States would maintain its U.S. nuclear arsenal without nuclear explosive testing. The challenge, of course, was how to actually carry out such a daunting task. The instruments were the tremendously successful Stockpile Stewardship Program (SSP) and Accelerated Strategic Computing Initiative which together drove much of supercomputing in the U.S. for sometime.

Today, the White House and DOE marked the anniversary with an event including comments from Secretary of State John Kerry, Secretary of Energy Ernest Moniz, and two panels featuring the directors of the three national labs involved at ASCI’s start – Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Strictly speaking, ASCI transitioned into becoming the Advanced Simulation and Computing (ASC) program in 2005 which is broadly carrying on the mission.

It’s worth noting how far supercomputing has come. Writing in 1999 on the modeling and simulation challenges ASCI faced in monitoring aging stockpiles and assessing new designs, Paul Messina, then with California Institute of Technology and DOE and now Director of Science, Argonne Leadership Computing Facility, noted:

“The goal of ASCI, however, is not a pipe dream. With funding from ASCI, the computer industry has already installed three computer systems, one at Sandia National Laboratories (built by Intel), one at Los Alamos National Laboratory (LANL) (an SGI-Cray computer), and another at Lawrence Livermore National Laboratory (LLNL) (an IBM computer), that can sustain more than 1 teraflops on real applications. At the time they were installed, each of these computers was as much as 20 times more powerful than those at the National Science Foundation (NSF) Supercomputer Centers (the Partnerships for Advanced Computational Infrastructure), the National Energy Research Supercomputing Center, and other laboratories. And this is only the beginning. By 2002, the computer industry will deliver a system 10 times more powerful than these two systems and, in between, another computer will be delivered that has three times the power of the LANL/LLNL computers. By the year 2004—only 5 years from now—computers capable of 100 trillion operations per second will be available.”[i]

Today of course, top supercomputers are petaflops machines and the new National Strategic Computing Initiative plots a course towards achieving exascale computing.

Today’s event featured remarks by: Moniz; Kerry; Deputy Secretary of Energy, Dr. Elizabeth Sherwood-Randall; NNSA Administrator, Lt. Gen. (Retired) Frank G. Klotz; NNSA Principal Deputy Administrator, Madelyn Creedon. There were also panel discussions:

  • Panel I (“From Cold War to No-Testing Regime – Challenges and Opportunities). Panel members: Charles Curtis, Senior Advisor, Center for Strategic and International Studies; Brian McKeon, Principal Deputy Undersecretary of Defense for Policy, DoD; and Franklin Miller, Principal, Scowcroft Group. Moderator:Madelyn Creedon
  • Panel II (“Assessing the Current Stockpile and Looking Forward 20 Years”). Panel members: Bill Goldstein, Director, Lawrence Livermore National Laboratory; Jill Hruby, Director, Sandia National Laboratories; and Charles McMillan, Director, Los Alamos National Laboratory. Moderator: General C. Robert Kehler (ret.), Former Commander, U.S. Strategic Command

It seems likely the timing of this event, at least in part, was intended to showcase U.S. strength in rigorous nuclear program assessment as implementation of the international Iran nuclear disarmament treaty unfolds. Indeed, Kerry’s comments were largely focused on the recent Iran deal.

dave-turek-headshotThat said, David Turek, vice president of exascale computing at IBM, posted a more personal retrospective blog around ASCI and its galvanizing effect on supercomputing and on IBM and Big Blue’s role in the program. Below is text from Turek’s blog.

What it Takes to Reinvent Supercomputing–Over and Over Again

I’m not usually a big fan of anniversaries (except my wedding day, of course), but I make an exception when it comes to IBM’s collaboration with the US Government on supercomputing.

Today is the 20th anniversary of the Accelerated Strategic Computing Initiative–a Department of Energy program that has safeguarded America’s nuclear weapon arsenal and, and the same time, helped IBM assert ongoing leadership in this most demanding of computer domains.

With help from National Laboratories scientists, teams of IBMers have produced five generations of supercomputers–repeatedly ranking among the fastest machines in the world. The journey led us to where we are today: developing a sixth generation of computers, data-centric systems designed from the ground up for the era of big data and cognitive computing.

The program was also instrumental in IBM’s rebound after the company’s near-collapse in the early 1990s.

I remember the day the original ASCI contract was signed. IBM and DOE people had gathered in a conference room at the IBM headquarters north of New York City. Unexpectedly, Lou Gerstner, IBM’s then-new CEO, popped in and gave off-the-cuff remarks. I remember him saying, “IBM is all about solving hard problems. This is the hardest problem there is. We’re all in.”

I was sitting in a chair and he was standing behind me. He put his hands on my shoulders and said, “Here’s the guy who will do it.”

Gulp.

The task of creating computers that are capable of simulating nuclear explosions so countries don’t have to test with actual bombs turned out to be difficult indeed.

The first years were the toughest.

I had been with IBM for nearly 20 years by then and had experience in both hardware and software development. Most relevantly, I had been involved in an effort to transform IBM mainframes into supercomputers. That didn’t pan out, but in the process we learned a lot about what it would take to build high-performance computers. We had relaunched our supercomputing effort with a new technology strategy just before we engaged with the Department of Energy.

To ramp up the ASCI project development team quickly, I cherry-picked people from IBM’s offices and labs all over the Hudson Valley. Some of them were green, in their 20s, but they had the nerve to rethink computing.

We made a series of radical choices. We adapted processors and systems technologies that IBM had developed for its scientific workstation business. UNIX would be the operating system. We had to invent new networking to hook all the processors together. And we were one of the first groups at IBM to use open source software. We had to move too quickly to code everything ourselves.

We also had to develop a new process for developing and manufacturing such complex systems–with thousands, and, later, millions, of processors.

With each new generation, the requirements increased dramatically. The first machines produced 3 teraflops of computing performance, or 3 trillion floating point operations per second. The current generation produces 20 petaflops; 20 quadrillion operations per second. That meant we had to invent not just individual technologies but whole new approaches to computing.

IBM_Blue_Gene_P_supercomputerFor instance, in the early 2000s, IBM Research and scientists at Lawrence Livermore National Laboratory teamed up to create a new supercomputing architecture which harnessed millions of simple, low-powered processors. The first systems based on this architecture, called Blue Gene/L, were incredibly energy efficient and exceeded the performance of Japan’s Earth Simulator by greater than a factor of 10, helping the US recapture leadership in supercomputing.

Today, we’re developing yet another generation of supercomputers for the National Laboratories. They’re based on the principle that the only way to efficiently handle today’s enormous quantities of data is to rethink computing once again. We have to bring the processing to the data rather follow the conventional approach of transmitting all of the data to central processing units.

When we first proposed this solution, we were practically laughed out of the room. But, today, data-centric computing is becoming accepted across the tech industry as the way to go forward.

Through the ASCI project, I learned lessons that I think are critical for any large-scale development project in the computer industry. First, you must assemble an integrated team of specialists in all of the hardware and software technologies. Second, you must see the big picture. Don’t think of a server computer in isolation. Plan so you can integrate servers and other components in large systems capable of taking on the most demanding computing tasks.

I guess there’s one more critical lesson I learned from this tremendous experience: recruit bright and fearless people and ask them to do nearly impossible things. Chances are, they’ll rise to the challenge.

[i] Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop. http://www.ncbi.nlm.nih.gov/books/NBK44974/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk management, and high-frequency trading, as told by a group of l Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

Legacy HPC System Seeds Supercomputing Excellence at UT Dallas

September 16, 2020

What happens to supercomputers after their productive life at an academic research center ends? The question often arises when people hear that the average age of a top supercomputer at retirement is about five years. Rest assured — systems aren’t simply scrapped. Instead, they’re donated to organizations and institutions that can make... Read more…

By Aaron Dubrow

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Google’s Quantum Chemistry Simulation Suggests Promising Path Forward

September 9, 2020

A much-anticipated prize in quantum computing is the ability to more accurately model chemical bonding behavior. Doing so should lead to better chemical synthes Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This