‘ASCI’ Turns 20; David Turek Offers IBM Retrospective

By John Russell

October 21, 2015

Twenty years ago President Bill Clinton announced that the United States would maintain its U.S. nuclear arsenal without nuclear explosive testing. The challenge, of course, was how to actually carry out such a daunting task. The instruments were the tremendously successful Stockpile Stewardship Program (SSP) and Accelerated Strategic Computing Initiative which together drove much of supercomputing in the U.S. for sometime.

Today, the White House and DOE marked the anniversary with an event including comments from Secretary of State John Kerry, Secretary of Energy Ernest Moniz, and two panels featuring the directors of the three national labs involved at ASCI’s start – Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Strictly speaking, ASCI transitioned into becoming the Advanced Simulation and Computing (ASC) program in 2005 which is broadly carrying on the mission.

It’s worth noting how far supercomputing has come. Writing in 1999 on the modeling and simulation challenges ASCI faced in monitoring aging stockpiles and assessing new designs, Paul Messina, then with California Institute of Technology and DOE and now Director of Science, Argonne Leadership Computing Facility, noted:

“The goal of ASCI, however, is not a pipe dream. With funding from ASCI, the computer industry has already installed three computer systems, one at Sandia National Laboratories (built by Intel), one at Los Alamos National Laboratory (LANL) (an SGI-Cray computer), and another at Lawrence Livermore National Laboratory (LLNL) (an IBM computer), that can sustain more than 1 teraflops on real applications. At the time they were installed, each of these computers was as much as 20 times more powerful than those at the National Science Foundation (NSF) Supercomputer Centers (the Partnerships for Advanced Computational Infrastructure), the National Energy Research Supercomputing Center, and other laboratories. And this is only the beginning. By 2002, the computer industry will deliver a system 10 times more powerful than these two systems and, in between, another computer will be delivered that has three times the power of the LANL/LLNL computers. By the year 2004—only 5 years from now—computers capable of 100 trillion operations per second will be available.”[i]

Today of course, top supercomputers are petaflops machines and the new National Strategic Computing Initiative plots a course towards achieving exascale computing.

Today’s event featured remarks by: Moniz; Kerry; Deputy Secretary of Energy, Dr. Elizabeth Sherwood-Randall; NNSA Administrator, Lt. Gen. (Retired) Frank G. Klotz; NNSA Principal Deputy Administrator, Madelyn Creedon. There were also panel discussions:

  • Panel I (“From Cold War to No-Testing Regime – Challenges and Opportunities). Panel members: Charles Curtis, Senior Advisor, Center for Strategic and International Studies; Brian McKeon, Principal Deputy Undersecretary of Defense for Policy, DoD; and Franklin Miller, Principal, Scowcroft Group. Moderator:Madelyn Creedon
  • Panel II (“Assessing the Current Stockpile and Looking Forward 20 Years”). Panel members: Bill Goldstein, Director, Lawrence Livermore National Laboratory; Jill Hruby, Director, Sandia National Laboratories; and Charles McMillan, Director, Los Alamos National Laboratory. Moderator: General C. Robert Kehler (ret.), Former Commander, U.S. Strategic Command

It seems likely the timing of this event, at least in part, was intended to showcase U.S. strength in rigorous nuclear program assessment as implementation of the international Iran nuclear disarmament treaty unfolds. Indeed, Kerry’s comments were largely focused on the recent Iran deal.

dave-turek-headshotThat said, David Turek, vice president of exascale computing at IBM, posted a more personal retrospective blog around ASCI and its galvanizing effect on supercomputing and on IBM and Big Blue’s role in the program. Below is text from Turek’s blog.

What it Takes to Reinvent Supercomputing–Over and Over Again

I’m not usually a big fan of anniversaries (except my wedding day, of course), but I make an exception when it comes to IBM’s collaboration with the US Government on supercomputing.

Today is the 20th anniversary of the Accelerated Strategic Computing Initiative–a Department of Energy program that has safeguarded America’s nuclear weapon arsenal and, and the same time, helped IBM assert ongoing leadership in this most demanding of computer domains.

With help from National Laboratories scientists, teams of IBMers have produced five generations of supercomputers–repeatedly ranking among the fastest machines in the world. The journey led us to where we are today: developing a sixth generation of computers, data-centric systems designed from the ground up for the era of big data and cognitive computing.

The program was also instrumental in IBM’s rebound after the company’s near-collapse in the early 1990s.

I remember the day the original ASCI contract was signed. IBM and DOE people had gathered in a conference room at the IBM headquarters north of New York City. Unexpectedly, Lou Gerstner, IBM’s then-new CEO, popped in and gave off-the-cuff remarks. I remember him saying, “IBM is all about solving hard problems. This is the hardest problem there is. We’re all in.”

I was sitting in a chair and he was standing behind me. He put his hands on my shoulders and said, “Here’s the guy who will do it.”


The task of creating computers that are capable of simulating nuclear explosions so countries don’t have to test with actual bombs turned out to be difficult indeed.

The first years were the toughest.

I had been with IBM for nearly 20 years by then and had experience in both hardware and software development. Most relevantly, I had been involved in an effort to transform IBM mainframes into supercomputers. That didn’t pan out, but in the process we learned a lot about what it would take to build high-performance computers. We had relaunched our supercomputing effort with a new technology strategy just before we engaged with the Department of Energy.

To ramp up the ASCI project development team quickly, I cherry-picked people from IBM’s offices and labs all over the Hudson Valley. Some of them were green, in their 20s, but they had the nerve to rethink computing.

We made a series of radical choices. We adapted processors and systems technologies that IBM had developed for its scientific workstation business. UNIX would be the operating system. We had to invent new networking to hook all the processors together. And we were one of the first groups at IBM to use open source software. We had to move too quickly to code everything ourselves.

We also had to develop a new process for developing and manufacturing such complex systems–with thousands, and, later, millions, of processors.

With each new generation, the requirements increased dramatically. The first machines produced 3 teraflops of computing performance, or 3 trillion floating point operations per second. The current generation produces 20 petaflops; 20 quadrillion operations per second. That meant we had to invent not just individual technologies but whole new approaches to computing.

IBM_Blue_Gene_P_supercomputerFor instance, in the early 2000s, IBM Research and scientists at Lawrence Livermore National Laboratory teamed up to create a new supercomputing architecture which harnessed millions of simple, low-powered processors. The first systems based on this architecture, called Blue Gene/L, were incredibly energy efficient and exceeded the performance of Japan’s Earth Simulator by greater than a factor of 10, helping the US recapture leadership in supercomputing.

Today, we’re developing yet another generation of supercomputers for the National Laboratories. They’re based on the principle that the only way to efficiently handle today’s enormous quantities of data is to rethink computing once again. We have to bring the processing to the data rather follow the conventional approach of transmitting all of the data to central processing units.

When we first proposed this solution, we were practically laughed out of the room. But, today, data-centric computing is becoming accepted across the tech industry as the way to go forward.

Through the ASCI project, I learned lessons that I think are critical for any large-scale development project in the computer industry. First, you must assemble an integrated team of specialists in all of the hardware and software technologies. Second, you must see the big picture. Don’t think of a server computer in isolation. Plan so you can integrate servers and other components in large systems capable of taking on the most demanding computing tasks.

I guess there’s one more critical lesson I learned from this tremendous experience: recruit bright and fearless people and ask them to do nearly impossible things. Chances are, they’ll rise to the challenge.

[i] Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop. http://www.ncbi.nlm.nih.gov/books/NBK44974/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

First Xeon-FPGA Integration Launched by Intel

May 22, 2018

Ever since Intel’s acquisition of FPGA specialist Altera in 2015 for $16.7 billion, it’s been widely acknowledged that some day, Intel would release a processor that integrates its mainstream Xeon CPU server chip wit Read more…

By Doug Black

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This