TGAC Unleashes DRAGEN to Accelerate Genomics Workflows

By John Russell

October 28, 2015

Accelerating genomics analysis remains one of the toughest challenges in life science research. All manner of optimizations are in use – disk streaming, optimized parallel files systems, algorithm tweaks, faster processors, and hardware accelerators, to name a few – all with varying results. Today, TGAC reported implementation of the first processor specifically designed to accelerate the full gamut NGS analysis workflows, Edico Genome’s DRAGEN system.

Initial evaluations have looked extremely promising. DRAGEN mapping against the ash tree genome was 177 times faster per processing core than TGAC’s local HPC systems, requiring only seven minutes instead of three hours on one of the larger datasets. Alignment runs on the rice genome that take approximately two hours on TGAC’s HPC servers took just three minutes using DRAGEN. Not surprisingly the TGAC folks are excited.

“At TGAC we see the DRAGEN dramatically improving our mapping thru variant-calling pipelines immediately. It uses optimized versions of standard tools such as algorithms for analyzing genomic data, including reference‐based mapping, aligning, sorting, deduplication and variant calling. We could easily replace many traditional HPC servers with the DRAGEN system saving both space and energy,” said project lead Dr Tim Stitt, also head of scientific computing at TGAC (The Genome Analysis Center, U.K. (description below)).

DRAGEN board 3The DRAGEN system is an FPGA-based approach; the DRAGEN Bio-IT Processor is integrated on a PCIe card and available in a pre-configured server that can be easily integrated into bioinformatics workflows. The highly reconfigurable FPGA provides hardware-accelerated implementations of BCL conversion, compression, mapping, alignment, sorting, duplicate marking, haplotype variant calling and joint genotyping.

Hardware acceleration, of course, isn’t new in bioinformatics. At one or another time there have been dedicated board-level and system level offerings from third parties. Convey Computer (now part of Micron), for example, introduced a ‘hybrid-core’ heterogeneous system, which used FPGAs and customized code to dramatically speed a variety of analysis tasks including BLAST and Graph analysis.

Moreover, sequencing centers are constantly fiddling with their systems to coax faster throughput. Early this year, blogger Richard Casey, a bioinformaticist at Colorado Statue University Next Generation Sequencing Core, reported achieving a 12X analysis speed-up using the new the Tesla K80, NVIDIA’s newest GPU in the Tesla series. (See HPCwire article, NVIDIA K80 GPU-System Speeds up Bioinformatics Tool 12X).

Said Stitt, “DRAGEN is the world’s first end-to-end platform for genomics – from BCL files in to annotated variant called files out. DRAGEN technology capitalizes on the availability of FPGAs in commodity servers that will be available on, for instance, Intel’s servers in the near future. This gives DRAGEN great scale and the technology can be deployed both locally onsite, close to a sequencing instrument, and also in the cloud.

Tim_STITT.TGAC.2“Convey’s product did not provide an end-to-end solution and only implemented small incremental steps of the pipeline. The Edico Genome engineering team that implemented and designed the architecture and algorithms for DRAGEN have previously worked on leading edge cell phone, telecommunication and data analytics chips. Updates and improvements to our platform and pipelines are done in a rapid and efficient way and does not take longer to update than traditional software updates,” said Stitt.

The DRAGEN system is engineered to keep the FPGA accelerators and CPUs busy. In order to do that the DRAGEN HW/SW is partitioned optimally and is highly scalable. IO access of the files fed to the DRAGEN is architected so as to avoid IO being the bottleneck. DRAGEN uses multiple high-end SSD drives in a RAID 0 configuration to maximize throughput in and out of disk. Further, DRAGEN on board memory has very large bandwidth that allows the DRAGEN FPGA to limit the IO interaction with the file system to a minimum.

Interestingly serendipity played a role in bringing DRAGEN to TGAC. “A member of our communications team picked up a press release introducing the DRAGEN system, explaining how it was reducing the analysis time (from mapping thru variant calling) for a human genome from 24 hours down to 20 minutes. This was a huge performance speedup and I was curious if it could be applied to non-human genomes as well,” said Stitt.

TGAC specialises in the sequencing and analysis of microbial, plant and animal genomes to advance a sustainable bioeconomy and protect the UK’s food security. With respect to the latter, it particularly focuses on the wheat genome.

Source: Shutterstock
Source: Shutterstock

“Since wheat is a staple diet for over 30% of the world’s population, we are focused on improving yields for an increasing population (estimates predict nine billion people worldwide by 2050) against the challenges of less space to grow wheat and heat, drought and pathogens that severely deplete wheat yield worldwide. By understanding the wheat genome we can help breeders overcome some of these obstacles. Unfortunately the wheat genome is five times bigger than the human genome and much more complex,” said Stitt.

Difficulty programming FPGAs has long been a stumbling block to wider adoption of the flexible technology. Stitt wondered how practical it would be to attempt to modify the DAGEN system for analysis of non-human genomes. Edico was also unsure initially, said Stitt, but was also willing to try.

“I provided them with an Ash Tree genome to test this out and after a couple of months they came back with the results of running on the DRAGEN. The fidelity of the results was comparable with those obtained on our local HPC cluster, yet it was much faster. Over the following months Edico engineers ran other test sets in-house for me including rice and horse genomes. Each time they had to adapt their pipelines slightly to handle the new genome but the performance results were very impressive.”

Once programmed, the system’s relative ease of use and flexible deployment were attractive features noted Stitt. The DRAGEN system can be housed close to the sequencing machines or in the Cloud. Users can interact with the system using a GUI or an API.

“I think we will be the first users to integrate the [DRAGEN] system within our existing HPC cluster as a scheduler resource, so users can target the system through a batch script like they would target a GPU or Xeon-Phi for instance. We will work closely with Edico Genome to implement this. We see the DRAGEN contributing significantly to mapping thru variant-calling workloads at TGAC, particularly for our strategic projects were time-to-solution is very important. This is where the DRAGEN gives us the edge over other approaches,” said Stitt.

DRAGEN-in-Front-of-Box-1030x686Edico is quite young, founded in 2013, but seems to be gaining attention. The DRAGEN system is proving faster than many traditional approaches that execute algorithmic implementations in software. In a recent study published in Genome Medicine, DRAGEN sped up analysis of a whole genome from 22.5 hours to 41 minutes, while also achieving sensitivity and specificity of 99.5 percent. Similar efficiency gains could make an enormous impact due to the high throughput of genomic data processed at TGAC, where sequence alignment is critical to many sequencing projects. The DRAGEN technology has also been shown to accurately analyze over 50 whole human genomes (from FASTQ to VCF) in less than a day.

“Our collaboration with TGAC, a powerhouse in genomics that is home to one of the largest computing hardware facilities in Europe, is a great example of the benefits DRAGEN holds for sequencing centers,” said Pieter von Rooyen, CEO, Edico.

About TGAC (Source: TGAC)
The Genome Analysis Centre (TGAC) is a world-class research institute focusing on the development of genomics and computational biology. TGAC is based within the Norwich Research Park and receives strategic funding from the Biotechnology and Biological Science Research Council (BBSRC). TGAC is one of eight institutes that receive strategic funding from BBSRC. TGAC operates a National Capability to promote the application of genomics and bioinformatics to advance bioscience research and innovation.Vertical Focus: HPC in BioIT

TGAC offers state of the art DNA sequencing facility, unique by its operation of multiple complementary technologies for data generation. The Institute is a UK hub for innovative Bioinformatics through research, analysis and interpretation of multiple, complex data sets. It hosts one of the largest computing hardware facilities dedicated to life science research in Europe. It is also actively involved in developing novel platforms to provide access to computational tools and processing capacity for multiple academic and industrial users and promoting applications of computational Bioscience. Additionally, the Institute offers a Training program through courses and workshops, and an Outreach program targeting schools, teachers and the general public through dialogue and science communication activities. www.tgac.ac.uk

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire