OpenACC Reviews Latest Developments and Future Plans

By Tiffany Trader

November 11, 2015

This week during the lead up to SC15 the OpenACC standards group announced several new developments including the release and ratification of the 2.5 version of the OpenACC API specification, member support for multiple new OpenACC targets, and other progress with the standard.

“The 2.5 specification addresses an essential challenge of profiling code where a few simple directives transform serial instructions and spread the work across thousands of cores,” said Duncan Poole, president of OpenACC-Standard.org and director of platform alliances, accelerated computing, at NVIDIA. “Using tools that support OpenACC, developers have an important lead in creating code that performs well across a variety of multi-core host devices and accelerators, including Titan, and the upcoming DOE Coral systems.”

OpenACC simplifies the programming of accelerated computing systems through the use of directives, which identify compute intensive code to a compiler for acceleration or offload, while preserving a single code base. The key aim of OpenACC is to enable performance portability across a growing number of HPC processor types, including GPUs, manycore coprocessors and multicore CPUs. In addition to being available from different compiler vendors, the standard is supported by an expanding range of debuggers, profilers and other programming tools.

This year brought the addition of ARM CPU and x86 CPU code generation using OpenACC, noted Poole. The PGI compiler can now accelerate applications across multiple x86 cores, while the PathScale compiler now supports acceleration across the 48 cores of a Cavium ThunderX ARM processor. In 2016, the standards body and its partners will be focusing on OpenACC running on POWER with GPUs, ARM with GPUs and Xeon Phi. “Basically we’re fulfilling the mission that we set out,” said Poole, “which was to be able to build portable code and work with all of the relevant architectures that are either here or emerging.”

Poole also talked up the OpenACC Toolkit, which was introduced in July to give scientists and researchers the tools and documentation they need to be successful with OpenACC. “If you want to see some pickup by the academic and research community, you need a free, but robust compiler,” he said. “NVIDIA put together a combination of the PGI compiler coupled with some key profiling tools and other information that would help a new academic get started and created a toolkit that is free for academic and student use.”

This is one of the ways that OpenACC is extending its developer base. Adoption has grown to some 10,000+ OpenACC developers, a conservative estimate according to the team. Training courses are well-received too, with Cal Poly, for example, having added the OpenACC curriculum as a four-credit course. Further, around 1,850 participants have registered for the OpenACC online course and OpenACC Hackathons are over-subscribed.

“We’re seeing a mix of direct site enthusiasm coupled with support coming from labs and compiler developers,” Poole said.

Key codes being ported during the 2015 Hackathons span a variety of disciplines, including computational fluid dynamics (INCOM3D, HiPSTAR and Numeca), cosmology and astrophysics (CASTRO and MAESTRO), quantum chemistry (LSDALTON), computational physics (Nek-CEM) and many more.

At the NCSA Hackathon, a team successfully accelerated an advanced MRI reconstruction model using NVIDIA GPUs. The challenge for the team was to take serial code and get it running on Blue Waters. Naturally, runtime took a dip at first, but speedups ensued as directives were added. In just a few days, the team managed to reduce reconstruction time for a single high-resolution MRI scan from 40 days to a couple of hours.

“Now that we’ve seen how easy it is to program the GPU using OpenACC and the PGI compiler, we’re looking forward to translating more of our projects,” said Brad Sutton, associate professor of bioengineering and technical director of the Biomedical Imaging Center University of Illinois at Urbana-Champaign. The implementation may even be suitable for powering clinical work, an exciting idea for the staff at Blue Waters.

OpenACC 2.5 and Beyond

Michael Wolfe, PGI compiler engineer and OpenACC technical committee chair, characterized the just-ratified 2.5 spec as somewhat of an interim release. The group has been working on both highly significant features in addition to a number of minor features, he said, and the aim of 2.5 was to take all the features that they could complete for this deadline and put those out. Beyond making some clarifications and fixing some spelling errors, the new release adds the following features:

• Asynchronous Data Movement
• Queue Management Routines
• Kernel Construct Size Clauses
• Profile and Trace Interface

The biggest feature in OpenACC 2.5, according to Wolfe, is the final bullet point — profile and trace interface — which will allow third-party tools vendors to tie into OpenACC runtime so they can access and present the performance related information. The functionality was initially part of a prototype implementation in the PGI OpenACC compiler and now with some minor changes based on feedback from that effort, the standards body has added this capability to the specification with the expectation that it will start being supported this year. TU Dresden has been using the PGI interface for profiling work and will be running a demonstration in their booth (#1351) at SC next week.

The following major features, however, are still going to take some extra effort, said Wolfe:

• Deep Copy – Nested Dynamic Data Structures
+ Substantial User Feedback
+ Builds on 2014 Tech Report
• Exposed Memory Hierarchy Management
• Multiple Device Support

According to Wolfe, deep copy is the signature feature that OpenACC is pushing to have ready for the 3.0 release. He said users have been asking for this for years and there are current machines that could really benefit, such as Piz Daint and Titan. “It’s a way to handle nested dynamic data structures,” Wolfe explained. “If you have a large array and you’re going to compute this on a device like a GPU, you’d want to move the array over to the device. But what if the array is actually an array of struct and each element of that array is a struct that has a sub-member that’s another allocatable array and each one of those sub-members is a different size and you want to move this whole deep data structure and maybe each of those sub-members is an array that is another struct that has another allocatable sub-member? And yes, we’ve seen this at least three levels deep in real scientific applications, weather applications in particular.

“So we need a way to manage the data traffic between host and device for basically pointer following on these deep data structures. It’s the number one most-requested features we’ve had from users from the past couple of years and in particular at the Hackathons,” said Wolfe. “What we’ve been working on is a way to express this in a way that provides all the functionality that we need, so we capture the cases that we know about in a way that is general enough to capture those cases but simple enough that it’s relatively easy to express and to use.”

Moving on to the next bullet point, Wolfe said OpenACC is getting ready for the exposed memory hierarchies associated with upcoming systems. “Think Knights Landing, Xeon Phi with near and far memory, or AMD high-bandwidth memory systems, or NVIDIA in the Pascal Volta timeframe where you’ve got a true unified address space but separate physical memories,” Wolfe prodded, “There is a need to manage data movement across what is basically an exposed memory hierarchy in a way that respects performance but is also as natural and portable as possible across all the different various systems.”

Another upcoming feature slated for a future release is improved multiple device support. While OpenACC already supports multiple devices, it’s not as convenient to use as people would like, said Wolfe. “We’ve had success with people doing multiple MPI ranks and multiple OpenMP threads and having each process, or each thread attach to a different device, and that works, but maybe there’s a better way to make it within a single thread use multiple devices,” Wolfe stated. “Compiling for an x86 multicore or an ARM multicore — if we treat that like a device and you have GPUs, now you have heterogeneous devices. Can we spread the work across all the devices counting the host multicore as a device in itself?”

“The challenge there is more about the data than it is about the compute,” he clarified. “It’s relatively easy to spread the computation across resources, it’s more of a challenge to make sure the data’s in the right place so we get the performance we want. That’s coming up in the next release or following releases.”

Comparisons to OpenMP

We also had a chance to discuss the relationship between OpenMP and OpenACC, and the potential for merging in light of the fact that there are members that are common to both organizations. “If you think about the act of parallelizing your code, just figuring out where those directives should go, is the hard part, and there is overlap in terms of location and placement of these directives,” said Poole. “Because of the cross-over in membership, there’s some value in having developers getting real-world experience, giving their feedback and having real production compilers implement a standard. I think all of that is goodness flowing back into OpenMP. In some ways OpenACC may be the best thing that ever happened to OpenMP in terms of giving that real feedback ahead of time.”

“From a technical perspective, there are certainly ways that OpenMP, MPI, OpenACC, even CUDA can interoperate, so these are not insurmountable challenges; it doesn’t have to be only a single way of programming as I would call the Highlander approach,” he added.

We’ll be diving deeper into this topic in a future piece, but as a teaser, here is a slide that was shared during the briefing:

OpenACC and OpenMP 4 - Jan 2015 slide

For those of you headed to Austin for SC15 next week, OpenACC members will be participating in number of presentations, talks and discussions — more info is available here.

 

Browse News From SC15

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This