OpenACC Reviews Latest Developments and Future Plans

By Tiffany Trader

November 11, 2015

This week during the lead up to SC15 the OpenACC standards group announced several new developments including the release and ratification of the 2.5 version of the OpenACC API specification, member support for multiple new OpenACC targets, and other progress with the standard.

“The 2.5 specification addresses an essential challenge of profiling code where a few simple directives transform serial instructions and spread the work across thousands of cores,” said Duncan Poole, president of OpenACC-Standard.org and director of platform alliances, accelerated computing, at NVIDIA. “Using tools that support OpenACC, developers have an important lead in creating code that performs well across a variety of multi-core host devices and accelerators, including Titan, and the upcoming DOE Coral systems.”

OpenACC simplifies the programming of accelerated computing systems through the use of directives, which identify compute intensive code to a compiler for acceleration or offload, while preserving a single code base. The key aim of OpenACC is to enable performance portability across a growing number of HPC processor types, including GPUs, manycore coprocessors and multicore CPUs. In addition to being available from different compiler vendors, the standard is supported by an expanding range of debuggers, profilers and other programming tools.

This year brought the addition of ARM CPU and x86 CPU code generation using OpenACC, noted Poole. The PGI compiler can now accelerate applications across multiple x86 cores, while the PathScale compiler now supports acceleration across the 48 cores of a Cavium ThunderX ARM processor. In 2016, the standards body and its partners will be focusing on OpenACC running on POWER with GPUs, ARM with GPUs and Xeon Phi. “Basically we’re fulfilling the mission that we set out,” said Poole, “which was to be able to build portable code and work with all of the relevant architectures that are either here or emerging.”

Poole also talked up the OpenACC Toolkit, which was introduced in July to give scientists and researchers the tools and documentation they need to be successful with OpenACC. “If you want to see some pickup by the academic and research community, you need a free, but robust compiler,” he said. “NVIDIA put together a combination of the PGI compiler coupled with some key profiling tools and other information that would help a new academic get started and created a toolkit that is free for academic and student use.”

This is one of the ways that OpenACC is extending its developer base. Adoption has grown to some 10,000+ OpenACC developers, a conservative estimate according to the team. Training courses are well-received too, with Cal Poly, for example, having added the OpenACC curriculum as a four-credit course. Further, around 1,850 participants have registered for the OpenACC online course and OpenACC Hackathons are over-subscribed.

“We’re seeing a mix of direct site enthusiasm coupled with support coming from labs and compiler developers,” Poole said.

Key codes being ported during the 2015 Hackathons span a variety of disciplines, including computational fluid dynamics (INCOM3D, HiPSTAR and Numeca), cosmology and astrophysics (CASTRO and MAESTRO), quantum chemistry (LSDALTON), computational physics (Nek-CEM) and many more.

At the NCSA Hackathon, a team successfully accelerated an advanced MRI reconstruction model using NVIDIA GPUs. The challenge for the team was to take serial code and get it running on Blue Waters. Naturally, runtime took a dip at first, but speedups ensued as directives were added. In just a few days, the team managed to reduce reconstruction time for a single high-resolution MRI scan from 40 days to a couple of hours.

“Now that we’ve seen how easy it is to program the GPU using OpenACC and the PGI compiler, we’re looking forward to translating more of our projects,” said Brad Sutton, associate professor of bioengineering and technical director of the Biomedical Imaging Center University of Illinois at Urbana-Champaign. The implementation may even be suitable for powering clinical work, an exciting idea for the staff at Blue Waters.

OpenACC 2.5 and Beyond

Michael Wolfe, PGI compiler engineer and OpenACC technical committee chair, characterized the just-ratified 2.5 spec as somewhat of an interim release. The group has been working on both highly significant features in addition to a number of minor features, he said, and the aim of 2.5 was to take all the features that they could complete for this deadline and put those out. Beyond making some clarifications and fixing some spelling errors, the new release adds the following features:

• Asynchronous Data Movement
• Queue Management Routines
• Kernel Construct Size Clauses
• Profile and Trace Interface

The biggest feature in OpenACC 2.5, according to Wolfe, is the final bullet point — profile and trace interface — which will allow third-party tools vendors to tie into OpenACC runtime so they can access and present the performance related information. The functionality was initially part of a prototype implementation in the PGI OpenACC compiler and now with some minor changes based on feedback from that effort, the standards body has added this capability to the specification with the expectation that it will start being supported this year. TU Dresden has been using the PGI interface for profiling work and will be running a demonstration in their booth (#1351) at SC next week.

The following major features, however, are still going to take some extra effort, said Wolfe:

• Deep Copy – Nested Dynamic Data Structures
+ Substantial User Feedback
+ Builds on 2014 Tech Report
• Exposed Memory Hierarchy Management
• Multiple Device Support

According to Wolfe, deep copy is the signature feature that OpenACC is pushing to have ready for the 3.0 release. He said users have been asking for this for years and there are current machines that could really benefit, such as Piz Daint and Titan. “It’s a way to handle nested dynamic data structures,” Wolfe explained. “If you have a large array and you’re going to compute this on a device like a GPU, you’d want to move the array over to the device. But what if the array is actually an array of struct and each element of that array is a struct that has a sub-member that’s another allocatable array and each one of those sub-members is a different size and you want to move this whole deep data structure and maybe each of those sub-members is an array that is another struct that has another allocatable sub-member? And yes, we’ve seen this at least three levels deep in real scientific applications, weather applications in particular.

“So we need a way to manage the data traffic between host and device for basically pointer following on these deep data structures. It’s the number one most-requested features we’ve had from users from the past couple of years and in particular at the Hackathons,” said Wolfe. “What we’ve been working on is a way to express this in a way that provides all the functionality that we need, so we capture the cases that we know about in a way that is general enough to capture those cases but simple enough that it’s relatively easy to express and to use.”

Moving on to the next bullet point, Wolfe said OpenACC is getting ready for the exposed memory hierarchies associated with upcoming systems. “Think Knights Landing, Xeon Phi with near and far memory, or AMD high-bandwidth memory systems, or NVIDIA in the Pascal Volta timeframe where you’ve got a true unified address space but separate physical memories,” Wolfe prodded, “There is a need to manage data movement across what is basically an exposed memory hierarchy in a way that respects performance but is also as natural and portable as possible across all the different various systems.”

Another upcoming feature slated for a future release is improved multiple device support. While OpenACC already supports multiple devices, it’s not as convenient to use as people would like, said Wolfe. “We’ve had success with people doing multiple MPI ranks and multiple OpenMP threads and having each process, or each thread attach to a different device, and that works, but maybe there’s a better way to make it within a single thread use multiple devices,” Wolfe stated. “Compiling for an x86 multicore or an ARM multicore — if we treat that like a device and you have GPUs, now you have heterogeneous devices. Can we spread the work across all the devices counting the host multicore as a device in itself?”

“The challenge there is more about the data than it is about the compute,” he clarified. “It’s relatively easy to spread the computation across resources, it’s more of a challenge to make sure the data’s in the right place so we get the performance we want. That’s coming up in the next release or following releases.”

Comparisons to OpenMP

We also had a chance to discuss the relationship between OpenMP and OpenACC, and the potential for merging in light of the fact that there are members that are common to both organizations. “If you think about the act of parallelizing your code, just figuring out where those directives should go, is the hard part, and there is overlap in terms of location and placement of these directives,” said Poole. “Because of the cross-over in membership, there’s some value in having developers getting real-world experience, giving their feedback and having real production compilers implement a standard. I think all of that is goodness flowing back into OpenMP. In some ways OpenACC may be the best thing that ever happened to OpenMP in terms of giving that real feedback ahead of time.”

“From a technical perspective, there are certainly ways that OpenMP, MPI, OpenACC, even CUDA can interoperate, so these are not insurmountable challenges; it doesn’t have to be only a single way of programming as I would call the Highlander approach,” he added.

We’ll be diving deeper into this topic in a future piece, but as a teaser, here is a slide that was shared during the briefing:

OpenACC and OpenMP 4 - Jan 2015 slide

For those of you headed to Austin for SC15 next week, OpenACC members will be participating in number of presentations, talks and discussions — more info is available here.

 

Browse News From SC15

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire