HPC at the Crossroads with DDN’s Alex Bouzari

By Doug Black

November 13, 2015

A company standing in the crossroads, one that is usually ready for whatever is onrushing, is DataDirect Networks, the scalable storage specialist founded in 1998. Back then, HPC was mostly contained within the world of the government labs and academia, where DDN is entrenched at two-thirds of the world’s biggest supercomputer sites. Now the company is at the forefront of the HPC breakout into the enterprise. Starting about five years ago, the primary source of DDN’s growth changed from the TOP500 to the Fortune 100, web cloud companies, the financial services industry and other enterprise markets.

Alex Bouzari, DDN CEO, chairman and co-founder, is well positioned to expound on the state of HPC. He recently spoke with EnterpriseTech and HPCwire on the convergence of traditional HPC and advanced scale computing in the enterprise, their divergent priorities, and the opportunities for technology providers in the future, the scale of which he says will dwarf today’s drive to exascale.

“We’re hearing it over and over again,” Bouzari said. “HPC has truly broadened from being an enabler for large scale computing and simulation for scientific discovery by the government labs and academia into something much broader. I really see it is becoming the engine that is driving connected societies and the global economy.”

A range of enterprise markets and applications increasingly use HPC tools to accelerate time-to-insight to better process, manage and share their data, Bouzari said, which in turn results in significantly better competitiveness and profitability.

“People in the enterprise weren’t so focused five years ago on delivering business value through IT,” said Bouzari, “it was making sure the data is protected and that users in the organization have access to the data. Now, increasingly, we’re seeing younger IT leaders in these organizations who view their jobs as not just to make sure data is safe and available, Amazon can do that, the job is to ensure that IT is bringing significant business value.”

With ROI comes enterprise adoption of HPC at scale.

“We have enterprise customers in the financial services sector, in life sciences, in genomics, in manufacturing, who have deployed systems that are as large the HPC Top 20, from a performance and scale standpoint. And it’s simply because it has become very easy for enterprise customers to justify the ROI of making these investments in technology, because the acceleration in analyzing and processing data, and the increased insights they get from their data, is translated into hundreds of millions of dollars in profits added to the bottom line. So the decisions are far, far easier.”

On the consumer side, web cloud companies, internet service providers and telco’s have adopted HPC to streamline costs and enable social media, and are at the early stage of delivering personalized services to consumers.

This ties into Bouzari’s vision for the digital, mobile world of the future, the “connected society.” Under the heading that “everything that rises must converge,” Bouzari says the relentless rise in technology’s ability to collect, process and share hundreds of trillions of stored objects that capture consumer behaviors will converge and connect people to each other and to companies.

“The trend we’re seeing will require significant advances in technology,” he said. “It’s the ability to collect data points from consumer behaviors as well as changing data sets in a mobile manner, and then using them to deliver very accurate and real-time information,” he said.

“Today we have a customer in the web cloud world using our products for mobile applications. Think of it as hundreds of millions of consumers making queries into mobile devices, DDN is the engine that drives all that worldwide. For these services to be beneficial to consumers, accuracy and real time response is very important, so every time you make a query they collect the information and store it so there’s an increasing level of accuracy every time that happens. It’s an object-based implementation and we now have more than a quarter trillion objects that are in this globally distributed DDN object based system used to deliver services to the consumer.”

The old way of gauging HPC – more bandwidth more capacity, better latency, figuring out how to beat Moore’s Law – will be dwarfed by web cloud organizations’ utilization of HPC technology, Bouzari said.

For industry veterans who shared the view that the HPC community is an incubator and proving ground for future technologies in the wider world, that day is arriving quickly. The work of traditional HPC industry remains vital, both for scientific discovery and for technological development, Bouzari said. But the market opportunity and technology challenges coming out of the enterprise world are outsized compared with the relatively small market of the HPC500.

This is good news for HPC vendors seeking new markets, but it carries with it big challenges not posed by the traditional HPC market.

“The labs and universities have rocket scientists and computer scientists to couple things together, and all they need is the system to deliver peak qualities. If it’s somewhat shaky, it’s OK.”

But in the enterprise, shaky is unacceptable.

“Enterprise customers are looking for the same performance and scale attributes that the labs and government agencies have been enjoying,” Bouzari said, “but in addition to that they are used to seeing reliability, resiliency and quality of service that is far more stringent than what traditional HPC has required. So as a result, products and services delivered to the enterprise have to be hardened, and you need to spend years and years and a significant amount of money in doing that for the product portfolio.”

This reflects a larger difference in orientations between traditional and enterprise HPC, with implications for the sales process.

“In traditional HPC, customers are very technical, very sophisticated,” Bouzari said, “so the dialogue is deep down into the bits and bytes of the technology, in terms of FLOPS, gigabytes per second, IOPS. HPC people want to know in great detail what is the software architecture like, what the block diagrams of the underlying hardware are like, how many pipes and what types of pipes are used. They also tend to be more interested in far more long-term product road maps. It’s not unusual for customers to ask for a five-year view, and not just cursory review, they really want to drill down into the details.”

But in the enterprise, “it tends to be more of technical business dialogue, where they are aware of the building blocks of the tech and big technological trends, but they have no interest in getting into the bowels of the actual product. In the enterprise, it’s ‘Explain to me how your roadmap aligns with my business requirements.’ They tell us it’s our job to translate their business requirements into a system architecture that meets and exceeds those requirements. They tell us, ‘It’s not our job to figure it out for you.’ Whereas the government labs typically love to figure it out for you.”

And whereas cost sensitivity in the labs is high, in the enterprise it’s not as acute – assuming a strong ROI case can be made.

DDN’s product portfolio rests on three pillars that have been the focus of the company’s R&D efforts for the past eight years, one that supports an end-to-end life cycle data management strategy:

Application and File System Acceleration: DDN’s Infinite Memory Engine (IME) extends the memory footprint by leveraging solid state and nonvolatile memory technologies. IME adds a data caching tier between processor and parallel file system, cutting latency and speeding applications by 1000X, Bouzari said.

Persistent Storage Layer: DDN’s Storage Fusion Architecture, of which the SFA14K is the new entry, is DDN’s new hyper-converged hybrid storage platform that integrates nonvolatile memory and solid state with discs for high end data performance: nearly 14 PB of capacity, 60gb second bandwidth and 6 million IOPS in a 4U footprint.

Object Storage Archive: Web Object Scaler (WOS) is DDN’s massively scalable object storage platform for live archiving and deep archiving, second in size to Amazon Web Services, according to DDN. WOS supports web-scale storage clouds and real-time distribution of content across large-scale collaboration infrastructures.

Bouzari said that while the three DDN pillars are constantly evolving and leveraging new technologies, the framework will remain in place.

“The building blocks need to come together and in the right way,” he said, with “connectors” that tie the three pieces together and enable intelligent migration from the nonvolatile memory layer to the persistent storage layer and then into archive.

“Advances in silicon, whether it’s processors, fabric or simply new nonvolatile memory technologies, are helping provide faster and faster capabilities, but they need to be architected in ways that they can be utilized and deployed effectively.”

While end-to-end data management is suited to the architectural and performance requirements of the enterprise, Bouzari said it’s also gaining acceptance in traditional HPC.

Browse News From SC15“It’s no longer just wanting the highest number of FLOPS at the lowest cost, or the highest bandwidth, or the highest capacity at the lowest cost,” Bouzari said. “Yes, those things remain important but they also need the ability to better manage their environments, the ability to tie big Lustre file system pieces into GPFS pieces, the need to go back and forth between persistent storage and the archive. There are bottlenecks in the jobs they’re running so they need to leverage nonvolatile memory, and they need all these pieces to come together.”

The beating heart of technological innovation: advances in silicon.

“The game is changing from ‘more of the same’,” Bouzari said, “to how to make this extremely powerful silicon, which is coming to the fabric, processors and nonvolatile memory, to provide better usability and better capabilities to the users. So it’s becoming a software game, with a lot of thought going into the proper design and architectures of the customer environments, rather than just brute forcing it by going from 10,000 to 20,000 to 50,000 cores and so forth. Things have changed and they’re continuing to change at an accelerated pace.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire