Mellanox, ORNL to Deliver UCX Progress Report at SC15

By John Russell

November 16, 2015

At ISC2015 Mellanox introduced a new open-source network communication framework – United Communication X Framework (UCX) – for high-performance and data-centric applications.

At the time Gilad Shainer of Mellanox said, “By providing our advancements in shared memory, MPI and underlying network transport technologies, we can continue to advance open standards-based networking and programming models. UCX will provide optimizations for lower software overhead in communication paths that will allow cross platform near native-level interconnect performance. The framework interface will expose semantics that target not only HPC programming models, but data-centric applications as well. It will also enable vendor independent development of the library.”

These are big goals. Promoting co-design methodology is at the heart of the effort. UCX alliance members hope the effort will not only provide a vehicle for production quality software, but also a low-level research infrastructure for more flexible and portable support for exascale-ready programming models. Other UCX founding members were present at the launch and included DOE’s Oak Ridge National Laboratory, NVIDIA, IBM, the University of Tennessee the group, and NVIDIA.

The UCX key UCX components include:

  • UC-S for Services. Basic infrastructure for component based programming, memory management, and useful system utilities. Functionality: platform abstractions and data structures.
  • UC-T for Transport. Low-level API that expose basic network operations supported by underlying hardware. Functionality: work request setup and instantiation of operations.
  • UC-P for Protocols. High-level API uses UCT framework to construct protocols commonly found in applications Functionality: multi-rail, device selection, pending queue, rendezvous, tag-matching, software-atomics, etc.

Shainer insists UCX is the framework for future systems. At SC15 this week, he and Pavel Shamis (ORNL) will provide UCX update at a BOF on Tuesday. As a prelude, HPCwire asked Shainer to review the purpose of UCX and its early activities and progress. Here is that interview.

HPCwire: I was at the ISC introduction of UCX and several of the gathered attendees were impressed by the founding members by confused about the goals and the problem it was attacking. Perhaps it would be worthwhile to review how UCX originated and what it seeks to accomplish.

Gilad1Shainer: Today there are multiple HPC libraries (MPI, SHMEM, PGAS languages) and emerging HPC programming models (libraries and languages) that face a substantial challenge because they require a re-implementation (or maintenance) of complex network codes within the code-bases.

This often leads to code duplication and long term maintenance issues. As a side effect these duplicated efforts frequently result in performance issues because developers don’t have the time, or the vendor-level expertise in some cases, required to optimize network. In addition, emerging hardware technologies are now focusing primarily on a limited range of HPC libraries or programming models (mostly MPI) due to time and resource constraints. At the end of the day, resources are desperately needed to optimize both software and hardware with emerging HPC programming models.

By providing a unified, standardized, performance-portable and hardware agnostic interface these issues are resolved. HPC libraries and programming models can now target a single API that enables optimal execution of the libraries on a broad variety of hardware architectures. At the same time, hardware vendors can focus on the development of a single layer, which enables functionality across multiple programming models.

Another important aspect of the challenge is the exascale programming environment has yet to be defined and it is a topic of ongoing HPC research. In order to address this challenge UCX was designed as a framework – a collection of building blocks that enables fast and flexible access to various utilities and communication directives. This approach provides fine grain flexibility that allows HPC researches to customize and adjust UCX for their unique and specific needs. This is exactly the part where the co-design component of the effort is critical. Through the UCX framework researchers can (and already do) influence hardware architecture through the offloading of some of the capabilities onto the hardware. Simultaneously researchers are able to learn about new features and capabilities of the hardware, enabling those for exascale programming models.

This is truly the kind of project where researchers and industry work together on co-design and transition from the bleeding edge of research to the production environment.

UCX diagram 2015-07-13HPCwire: You’ve described ambitious goals. How do you practically make that happen? Who are the primary supporters UCX has and needs and what are the key technical hurdles confronting progress?

Shainer: UCX is truly open source and community driven effort. The base code of UCX was contributed by industry, academic and government labs, and today the organizations involved are Oak Ridge National laboratory, Mellanox, IBM, NVIDIA, Lawrence Livermore national laboratory, Argonne National laboratory, University of Tennessee, Houston University and Pathscale.

In terms of technical hurdles confronting progress, UCX is vastly different from other frameworks. The base of UCX required years of development from its members, and now the effort is being unified. Users, labs, academic institutes and commercial vendors are all working together to create synergies between the software and the hardware. The intention is to deliver the most advanced high-performance software framework that will be used on standard solutions, such as InfiniBand and Ethernet, as well on custom made products.

HPCwire: Does UCX effort to fit into OpenPOWER?

Shainer: No, UCX is not part of OpenPOWER. UCX supports any compute platform including Power, GPUs and x86. We believe many future systems, including the CORAL system (but not limited to CORAL), will use UCX as the software framework between the infrastructure and the applications.

HPCwire: What are some of the milestones you’ll look for to that indicate UCX is gaining traction in the HPC community?

Shainer: The number of contributors and developers on UCX continues to grow and we are seeing more and more organizations looking to incorporate UCX into their HPC platforms. UCX has already been integrated with upstream of Open MPI project and OpenSHMEM. Upcoming version of OpenMPI 2.0 will have full support for UCX. Also, the upcoming year will reveal more software solutions using HPC, including the highly popular MPICH MPI developed by researches from Argonne National Laboratories, as well as increased support for emerging exascale runtimes like ParSec developed by University of Knoxville, Tennessee. Clearly there is a need for a co-designed, open and eco-system driven framework out there, and UCX is filling this need.

HPCwire: The original announcement noted UCX will incorporate elements of MXM (Mellanox), UCCS (ORNL), and PAMI (IBM) technology. This seems like a powerful combination. How will this work be done and what are the strengths of each the UCX wishes to capture?

Shainer: Yes, this is a powerful combination. With UCX we consolidate decades of experience in development of HPC software by variety of industry and academy organization into an open source framework. It unites elements that were designed for the fastest networks, large infrastructures, accelerators, MPI, SHMEM/PGAS and UPC. We have successfully created synergies between the software and the hardware, and it is full open source. We’ll do several demonstrations at SC15, and will host a BoF session on Tuesday, November 17, 3:30PM – 5:00PM, Room 15. All are invited to join us there and learn more on UCX, its mission, the current development status and our future plans.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This