Mellanox Touts Arrival of Intelligent Interconnect

By Tiffany Trader

November 16, 2015

Intelligence and integration are the watchwords of an era in which the insatiable demand for faster, more powerful computers can no longer ride the coattails of a strong Moore’s law. These are also the hallmarks of co-design, an approach that is championed by interconnect fabric vendor Mellanox Technologies and others in the community as essential for supercomputing to progress to exascale and beyond.

As Mellanox evolves its 100 Gb/s Enhanced Data Rate (EDR) InfiniBand product line, it is leveraging synergies between software and hardware and adding intelligence to the interconnect in the process. Put another way, Mellanox is moving compute closer to the network to free up server CPUs for more high-level tasks, a strategy that is crystalizing with the company’s latest product additions: Switch-IB 2, its next-generation 100 Gb/s InfiniBand switch targeted at high-performance computing and hyper-scale workloads; and the ConnectX-4 Lx Programmable adapter, designed to provide FPGA-based acceleration for a range of network applications.

Mellanox intelligent interconnect paves road to exascale slide SC15

Like the original Switch-IB, the new 36-port Switch-IB 2 (announced Nov. 12) integrates 144 SerDes, which can operate at 1 Gb/s to 25 Gb/s speeds per lane for a total of 7.2 Tb/s throughput. However, thanks to the addition of SHArP technology (SHArP stands for Scalable, Hierarchical, Aggregation Protocol), Switch-IB 2 can do something its predecessor cannot: offload collective MPI operations from the CPU to the network — for a claimed 10X performance boost.

As Mellanox explains, SHArP is a co-design architecture that enables the usage of all active datacenter devices to accelerate the communications frameworks, in this case taking the MPI operations that run on the CPU and executing them on the switch.

“Today, MPI collective operations run on the server, which means that each endpoint needs to communicate with every other endpoint (server),” Mellanox’s Gilad Shainer said in an interview. “We were able to move some of those operations to the NIC side, but still it’s running on the server. When a server needs to run those synchronization operations, it needs to communicate with every other server in the cluster. This requires multiple communications over the network that goes from the server to every other endpoint on the cluster and back. This is the wall, and you cannot reduce the latencies. When we take this load and move it to be executed and managed by the switch silicon, the switch can execute an MPI communication in one transaction because it is connected to everything. It can go to all of the endpoints at once and get the data back and that’s it. So instead of multiple transactions over the network, you combine everything to a single transaction. That means you go from tens of microseconds to a low single digit of microseconds.”

By becoming an active element, Switch-IB 2 enables application managers to use the power of data. Shainer attributes the company’s inclusion in the CORAL project to this offload capability. The DOE labs were funding some of the developments of the SHArP technology and being able to gain this 10X performance improvement on their codes was key, he said.

The new switch touts sub-90 nanosecond latency, 7.2Tb/s throughput, 7.02 billion messages/sec, as well as adaptive routing, congestion control, and support for multiple topologies. Pricing isn’t available yet, but Shainer reports it is fairly close to switch IB-1 pricing.

Mellanox is also using the SC15 launch pad to announce the ConnectX-4 Lx Programmable adapter, which puts a Mellanox NIC and a Xilinx FPGA on a single board/adapter to accelerate network applications, including security, deep packet inspection, compression/decompression, high-frequency trading and others. Today users that require this acceleration must use discrete components but the new adapter facilitates a closer connection and it’s more cost-effective and space-efficient because it’s just one card, said Shainer.

Another technology that Mellanox is showing at SC is Multi-Host Direct Socket, designed to enable low latency socket communication and be transparent to the application. Shainer explained that multi-host gives the CPU direct network access by taking the PCIe interface from a NIC and divvying it up into separate PCIe interfaces, each connected to a different socket. This makes more cycles available to the application by avoiding the QPI route, allowing for 50 percent lower CPU utilization and 20 percent lower latency, according to Shainer. Mellanox Multi-Host technology is available today in the company’s line of ConnectX-4 10/25/50/100 Gigabit Ethernet adapters ICs, and in OCP-based boards as part of Facebook’s Yosemite platform.

This slide provides an overview of Mellanox’s end-to-end portfolio:

Mellanox portfolio slide SC15

InfiniBand is currently the de-facto interconnect solution for performance demanding applications, with Mellanox InfiniBand holding a solid half of the petascale TOP500 systems (Cray has 19, BlueGene 8, and other proprietary 6) on the June TOP500 list. Shainer expects this growth to continue on the current list (announced today). We are seeing faster adoption of EDR versus the previous generation, FDR, he observed.

Mellanox CEO Eyal Waldman echoed this sentiment in a recent financial report. “We are seeing revenues from our 10, 25, 40, 50 and 100 Gigabit Ethernet solutions and traction with large data center customers for these products,” he stated. “We are happy to see our EDR 100 Gigabit InfiniBand revenues growing at a faster pace than FDR did, to approximately 12 percent of InfiniBand revenues.”

Following the trend of other long-time HPC vendors, Mellanox says it still remains dedicated to traditional HPC, but it is seeing growth outside the traditional lab and government datacenters. “Paypal is a known case,” Shainer shared, ticking off several more examples of the new-school InfiniBand users, including “financial institutes for latencies, Baidu, and other Tier 1 companies outside of HPC in the Web 2.0 sphere.”

Mellanox has also decided the time is right to start addressing the fire outside its doors, specifically Intel’s next-generation 100 Gb/s networking fabric, Omni-Path, which Shainer characterized as “an opposite architecture to what Mellanox is doing.” Mellanox’s main focus is offloading compute and moving intelligence to the network to overcome performance walls, while Omni-Path “is built on a non-offload network,” Shainer stated.

“We don’t think that Omni-Path can compete on application performance. Yes, they will show the basic numbers of 100 Gb/s and perhaps an equivalent latency [to our solution], but when it goes to the datacenter performance, the application performance, the lack of offloading network does not allow you to scale or provide efficiencies,” noted Shainer. “It puts a burden on the CPU, and it doesn’t provide the same performance.” He takes this argument one step further to suggest that keeping this burden on the CPU boosts CPU sales volumes, which would be beneficial to their bottom line as a chip company.

While Mellanox is advancing its strategy of pushing intelligence into the network, Intel’s been working to drive the fabric closer to the CPU. Intel has done this through both acquired IP and its own technology advances with a strong focus on integration. And make no mistake, Intel has been busy positioning its Omni-Path fabric as a superior alternative to InfiniBand. Intel has said that the Omni-Path precursor, True Scale, was designed to optimize the performance and scalability of MPI based applications.

Intel calls Omni-Path, which hit general availability today, the successor to Intel True Scale Fabric, but Intel has put this end-to-end networking fabric together based largely around acquisitions: True Scale InfiniBand IP from QLogic in 2012, Aries IP from Cray a few months later, and going back a few years, the Fulcrum Microsystems Inc. purchase. Intel recorded strong True Scale sales last year and it’s been sampling Omni-Path “with most major HPC and OEM vendors” in the months leading up to today’s GA announcement. The first Omni-Path products (the initial Intel OPA 100 series) will utilize discrete adapters that fit into PCIe slots, but the company has plans integrate Omni-Path connectivity into Intel Xeon Phi and then Xeon processors, enabling better latency and less power use.

We’ll leave a deeper Omni-Path dive for later this week, but here’s a few specs to help you make your own comparisons:

Intel Omni-Path OPA Table 2015

Another distinction that Shainer put forth was the potential drawbacks to being a proprietary network. Mellanox, an OpenPOWER partner, says it is focused on enabling performance and scalability for all infrastructure platforms: x86, Power, GPU, ARM and FPGA-based platforms at 10, 20, 25, 40, 50, 56 and 100Gb/s speeds. “We introduced the first 100 Gb/s interconnect in 2014; we’re going to have a complete end-to-end solutions in 2017 for 200 Gb/s,” Shainer said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire