Think Fast: IBM Talks Acceleration in HPC and the Enterprise

By John Russell

November 16, 2015

At SC15 today, IBM provided a glimpse of its broadening vision for accelerator-assisted computing with announcements around Watson, a strategic alliance with FPGA specialist Xilinx, an expanded developer outreach via the SuperVessel program, and new efforts to accelerate the datacenter and a wide variety of applications used in both HPC and the enterprise.

“Accelerators have come to play a dominant role in HPC and we believe the notion of an accelerated datacenter is beginning to creep into the enterprise and will become a dominant factor,” Sumit Gupta, vice president, HPC and OpenPOWER operations at IBM told HPCwire. The IBM vision encompasses roles for both GPU- and FPGA- accelerated systems integrated with OpenPOWER architecture and taking advantage of CAPI interface. Gupta outlined what he called an ambitious three-pronged effort to accelerate computing, storage and networking.

GPUs, of course, have proven very powerful in HPC. More than 100 of the TOP500 machines from the list announced this morning rely on GPU acceleration, accounting for a total 143 petaflops – more than one-third of the list’s total FLOPS. NVIDIA Tesla GPU-based supercomputers comprise 70 of these systems – including 23 of the 24 new systems on the list.

Accelerators.TOP500.SC15As shown here the mix of accelerators powering the TOP500 is growing (source: Top500). With Moore’s Law topping out, IBM is betting accelerators, both GPUs and FPGAs, will become pivotal to improving performance not only for traditional HPC applications, but also for big data and data analytics challenges.

As part of the barrage of accelerator news, IBM noted for the first time that Watson, IBM’s “cognitive computing” platform, has been accelerated with NVIDIA Tesla K80 GPUs coupled to Watson’s POWER-based architecture. According to IBM, Watson’s retrieve and rank API capability is now 1.7x of its normal speed and Watson’s processing power up to 10x its prior performance according.

Other important bullet points include:

  • Newest OpenPOWER Platinum member Xilinx and IBM have a multi-year strategic collaboration to develop and market a series of data center and network function virtualization (NFV) solutions with systems, software, and management components around Xilinx FPGA accelerators. Solutions will focus on emerging workloads including high performance computing, cognitive computing, machine learning, genomics and big data analytics.
  • IBM reiterated Mellanox support of CAPI with its earlier release of the world’s first smart network switch, the Switch-IB 2, capable of delivering clients 10x system performance improvement. NEC announced availability of its ExpEther Technology that is also suited for POWER architecture-based systems, along with plans to leverage IBM’s CAPI technology in 2016.
  • OpenPOWER members, E4 Computer Engineering and Penguin Computing, announced new systems based on the OpenPOWER architecture and incorporating POWER8 and NVIDIA Tesla GPU accelerators.
  • IBM has ported a series of key IBM Internet of Things, Spark, Big Data and Cognitive Era applications to take advantage of the POWER architecture with accelerators.

As part of the IBM and Xilinx strategic collaboration, IBM Systems Group developers will create solution stacks for POWER-based servers, storage and middleware systems with Xilinx FPGA accelerators for data center architectures such as OpenStack, Docker, and Spark. IBM will also develop and qualify Xilinx accelerator boards into IBM Power Systems servers. Xilinx is developing and will release POWER-based versions of its leading software defined SDAccel Development Environment and libraries for the OpenPOWER developer community.

IBM suggests that as heterogeneous workloads have become increasingly prevalent, data centers are turning to application accelerators to keep up with the demands for throughput and latency at low power. Xilinx FPGAs, reports IBM, can deliver the power efficiency that makes accelerators practical to deploy throughout the data center.

SumitGupta_120x168Gupta couldn’t resist taking a swipe at Intel. “The difference between our platform and the x86 platform is that we actually partner with Xilinx and NVIDIA to build tightly integrated interfaces like CAPI and NVlink and put our investments together to come to market with an open collaborative solutions. This is in stark contrast to [the] competing solution which is completely closed, proprietary, and all designed from one vendor.”

The war of words aside, it will be interesting to watch the competing approaches play out. IBM and the OpenPOWER favor a multiple discrete component approach that is optimized and tightly glued together through collaborative design. Intel is betting that bringing these functions together under one roof, and mostly in silicon, will end up delivering higher performance. No doubt both have advantages. Stay tuned.

Commenting on the expanding role of FPGAs and GPUs, Gupta said IBM sees the two technologies as complementary. Some workloads such as deep learning and model training are currently best suited for GPUs, he said. Conversely, once the model is set and objects identified, FPGAs can handle those workloads well.

He added IBM is seeing more use of FPGAs in a variety of workloads – genomics is one – and network processing is another. The latter permits use of a standard server with FPGA-based specialization rather than the use of distinct dedicated boxes for differing network applications such as security or packet processing. Network virtualization will significantly benefit from FPGAs, he said.

Currently, IBM is working on accelerating a wide range of applications. “We have an accelerated storage solution [in which] we connect our flash using CAPI to the POWER system [which] is very useful to accelerate NoSQL database applications, which are basically analytics,” Gupta said. He pointed to Apache Spark and NoSQL databases Redis and Neo4j as examples of application acceleration being undertaken by IBM.

Obviously, getting OpenPOWER systems with accelerators into the hands of developers is a necessary part of IBM’s strategy. To that end, IBM reported expanding GPU services on SuperVessel, the global cloud-based OpenPOWER ecosystem resource launched in June and initially based only in China. SuperVessel now provides GPU-accelerated computing as-a-service capabilities, giving users access to high-performance NVIDIA Tesla GPUs to enable Caffe, Torch and Theano deep-learning frameworks to instantaneously launch from the SuperVessel cloud.

“We are also announcing a new SuperVessel system that will serve North America and Europe. This will dramatically increase developer access,” said Gupta. As part of the expansion, Xilinx and IBM have developed a new FPGA accelerator service on SuperVessel that makes coherent reconfigurable accelerators available to developers via the cloud. By enabling high-level language programming like C, C++ and OpenCL, Xilinx and IBM are attempting to dramatically expand how users leverage FPGAs in the cloud for innovation on applications like machine learning, big data analytics and HPC.

IBM is also adding developer resources at the University of Texas and Oregon State University aimed at the academic research community, “but which anyone can apply for” said Gupta. He noted IBM has already developed proof-point case studies such as one based on work at Baylor College, which used accelerators and a Power system for genomics applications.

  • The Baylor team, led by geneticist and computer scientist Erez Lieberman Aiden, developed a new procedure to modify how a human genome is arranged in three dimensions in the nucleus of a cell. The work was done using a Power System accelerated with NVIDIA Tesla GPUs and Mellanox network infrastructure “to build a 3-D map of the human genome and model the reaction of the genome to this surgical procedure, without disturbing the surrounding DNA.”
  • At OSU, the Open Source Lab (OSUOSL) has increased the footprint of POWER8-based systems in their existing OpenStack cluster with additional compute and memory capacity. The expansion significantly increases the number of distinct users OSUOSL can support for research and development on OpenPOWER/OpenStack infrastructures.

IBM logoIBM offered another bit of evidence for OpenPOWER Foundation’s gathering momentum: new member Texas Advanced Computing Center (TACC) at University of Texas at Austin, and IBM announced a POWER8 accelerated computing cluster to be made available to academic researchers and developers. The new cluster is currently running successfully in an early user mode, and will begin accepting requests for access this week.

On balance, today’s IBM news was all about the rise of accelerator-assisted computing and IBM’s embrace of it, including its steady march into the enterprise.

“There is a need for systems that provide greater speed to insight — for data and analytics workloads to help businesses and organization make sense of the data, to outthink competitors as we usher in a new era of Cognitive Computing,” said Brad McCredie, IBM Fellow and OpenPOWER Foundation President. “IBM and our more than 160 partners in the OpenPOWER Foundation are on the forefront driving the changes necessary for innovation at all levels of the technology stack, including the development the industry’s first open, high-speed interconnects between processors and accelerators.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire