Dell Charts HPC Course to the Enterprise

By John Russell

November 17, 2015

SC15 is starting to feel like EnterpriseHPC15 — not that there isn’t a lot of extreme scale computing on the menu — but the big systems and chip makers all seem to be publically pivoting towards the enterprise. Yesterday it was Dell’s turn declaring its intention to democratize HPC and accelerate mainstream adoption.

Dell, which bills itself as the lone desktop to petaflops company now that HP has split up, is rolling out what it calls engineered solutions and reference architectures intended to make HPC adoption dramatically easier for small and medium enterprises. Engineered solutions can be ready-to-run out of the box, said Jim Ganthier, VP and general manager, Engineered Solutions and Cloud, Dell. The reference architectures are more likely to deliver 80 percent of the solution with Dell-client collaboration filling in the final 20 percent.

Put simply, the Dell belief is this: HPC is becoming increasingly critical to how organizations of all sizes innovate and compete. Many organizations lack the in-house expertise to configure, build and deploy an HPC system without losing focus on their core science, engineering and analytic missions.

Indeed every big systems builder seems to have a version of the argument. Ganthier cited National Center for Manufacturing Sciences data that suggests 98 percent of all products will be designed digitally by 2020, yet 95 percent of the center’s 300,000 manufacturing companies have little or no HPC expertise.

If these estimates are even modestly accurate, it’s no mystery why HPC product makers are shifting course. One could argue that in recent years HPC technology suppliers have mostly wrangled over market share while the total size and growth rate of the traditional HPC market remained modest and driven (mainly) by government procurement cycles.

Moreover, if supercomputers are the spearhead of advanced computing, the slowdown in Moore’s Law has flattened the spear tip just as the enterprise’s need for advanced computing has grown. Result: Some of the grandeur has slipped from the TOP500 and making the list is not the badge of glory it once was. Ganthier said, “It’s kind of starting to run its course because standing up something [in the TOP500] is just a beauty contest.” The real action, Dell is betting, is putting HPC to work. He said Dell wouldn’t walk away from the TOP500 – there were 13 Dells on the list this year – but it wasn’t a priority.

Dell plans to leverage its technical expertise, extensive work with prominent domain collaborators, and alliance with leading technology partners to create a pipeline of pre-formed HPC solutions. A good example is the fruit of its collaboration with genomics powerhouse, the Translational Genomics Institute. The Dell HPC System for Genomic Data Analysis is designed to meet the needs of genomic research organizations to enable cost-effective bioinformatics centers delivering results and identifying treatments in clinically relevant timeframes while maintaining compliance and protecting confidential data.

The engineered solution version is “literally a part number. Everything is prebuilt and prewired right up to including genomics analysis tool suites,” said Ganthier. A more sophisticated user might choose to work with the reference architecture so as to create a system optimized for specific needs.

Two other application specific HPC offerings announced include:

  • Dell HPC System for Manufacturing is designed for customers running complex manufacturing design simulations using workstations, clusters or both. Applicable use cases include Finite Element Analysis for structural analysis using ANSYS Mechanical & Computational Fluid Dynamics for predicting fluid behavior in designs utilizing ANSYS Fluent or CD-adapco STAR-CCM+.
  • Dell HPC System for Research is designed as a foundation, or reference architecture, for baseline research systems and numerous applications involving complex scientific analysis. This standard cluster configuration can be used as a starting point for Dell’s customers and systems engineers to quickly develop research systems that match the unique needs of research customers requiring systems for a wide variety of research agendas.

“HPC is no longer a tool only for the most sophisticated researchers. We’re taking what we’ve learned from working with some of the most advanced, sophisticated universities and research institutions and customizing that for delivery to mainstream enterprises,” said Ganthier.

The new Dell HPC System Portfolio is a family of HPC and data analytics solutions featuring: simplified design, configuration, and ordering in a matter of hours instead of weeks; domain-specific design that’s designed and tuned by Dell engineers and domain experts for specific science, engineering and analytics workloads using flexible industry-standard building blocks; and fully tested and validated with a single point of hardware support and a wide range of additional service options.

Big data and the cloud considerations were also important if not the major drivers in the strategy shift. “Every conversation about HPC now has a big data component or has a cloud component,” said Ganthier. Data handling and data analytics will no doubt play important roles in product development, as will efforts to leverage Dell cloud resources.

Investment and realignment of resources are needed to make the new strategy work. Dell announced a new expansion of its Dell HPC Innovation Lab in cooperation with Intel specifically for support of its Intel Scalable System Framework. It’s a multi-million dollar expansion to the Austin, TX, facility and includes additional domain expertise, infrastructure and technologists. It’s likely more such centers will be added over time.

Ganthier noted Dell is an early supporter of the nascent OpenHPC project being organized by the Linux Foundation. Its primary goal is a more ‘standardized’ software stack for HPC. It’s still early, but there’s agreement that such a stack that was reliable and easy to use could accelerate HPC adoption in the enterprise.

Dell is clearly betting big on Intel. Beyond becoming the first major original equipment manufacturer (OEM) to join the Intel Fabric Builders program, Dell is working closely with Intel to support its Intel Scalable System Framework, which includes Intel Omni-Path Fabric technology, next-generation Intel Xeon processors, the Intel Xeon Phi processor family, and the Intel Enterprise Edition for Lustre.

Dell also announced its new networking H-Series switches and adapters for PowerEdge servers would support Omni Path. The architecture includes advanced features such as traffic flow optimization, packet integrity protection and dynamic lane scaling allowing for finer-grained control on the fabric level to enable high resiliency, high performance and optimized traffic movement.

In addition, Dell said it would showcase at SC15 many components of the Intel Scalable System Framework including Intel Omni-Path Architecture, Intel Enterprise Edition of Lustre, and Intel Xeon Phi processor family. In addition, Dell is hosting numerous confidential advisory sessions with customers at the show gathering insights to help optimize its implementation of systems using next-generation Intel Xeon Phi.

Mellanox, a longtime Dell collaborator, announced additional investment in Dell’s existing HPC Innovation Lab to provide an end-to-end EDR 100Gb/s InfiniBand supercomputer system. The system is designed to showcase extreme scalability by leveraging the offloading capabilities and advanced acceleration engines of the Mellanox interconnect as well as provide application specific benchmarking, and characterizations for customers and partners.

Source: Dell
Source: Dell

It’s also worth noting Dell still has its fingers in the big systems pot, often in conjunction with the convergence of big data and cloud initiatives. For example, the San Diego Supercomputer Center (SDSC) recently launched its new Comet petascale supercomputer powered by Dell PowerEdge C6320 servers. “Comet provides ‘HPC for the 99 percent’—serving as a gateway to discovery for a much larger research community so we needed a solid hardware foundation,” said Michael Norman, SDSC director and principal investigator for the Comet project.

Other impressive Dell installations include:

  • The Texas Advanced Computing Center at the University of Texas at Austin, which specializes in scientific visualization, data analysis and storage systems, software, research and development and portal interfaces. Dell technology is used in TACC supercomputing clusters, including Stampede and Wrangler.
  • The HiPerGator at the University of Florida is now being expanded to add capacity and capabilities with 30,000 cores in approximately 1,000 nodes made by Dell. HiPerGator performs complex calculations and data analyses for researchers to find life-saving drugs, make decades-long weather forecasts and improve armor for troops.
  • Jetstream, with Dell hardware at the core, is scheduled to enter production in January 2016 at Indiana University. “[It] will bring to XSEDE and the national research community a user-friendly cloud environment that allows researchers to analyze their data now – whenever now is for that researcher,” said Craig Stewart, Executive Director, Indiana University Pervasive Technology Institute and Associate Dean, Research Technologies, Indiana University.

editorialfeature

 

 

 

 

http://www.hpcwire.com/2015-supercomputing-conference/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the global stage. Now, the Mohammed VI Polytechnic University (U Read more…

By Oliver Peckham

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 25, 2021

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply over Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing system, called "Wisteria/BDEC-01," that will tackle simulati Read more…

By Tiffany Trader

President Biden Signs Executive Order to Review Chip, Other Supply Chains

February 24, 2021

U.S. President Biden signed an executive order late today calling for a 100-day review of key supply chains including semiconductors, large capacity batteries, pharmaceuticals, and rare-earth elements. The scarcity of ch Read more…

By John Russell

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

AWS Solution Channel

Introducing AWS HPC Tech Shorts

Amazon Web Services (AWS) is excited to announce a new videos series focused on running HPC workloads on AWS. This new video series will cover HPC workloads from genomics, computational chemistry, to computational fluid dynamics (CFD) and more. Read more…

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

IBM’s Prototype Low-Power 7nm AI Chip Offers ‘Precision Scaling’

February 23, 2021

IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications. In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM... Read more…

By George Leopold

IBM Continues Mainstreaming Power Systems and Integrating Red Hat in Pivot to Cloud

February 23, 2021

As IBM continues its massive pivot to the cloud, its Power-microprocessor-based products are being mainstreamed and realigned with the corporate-wide strategy. Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

ENIAC at 75: Celebrating the World’s First Supercomputer

February 15, 2021

With little fanfare, today’s computer revolution was arguably born and announced through a small, innocuous, two-column story at the bottom of the front page of The New York Times on Feb. 15, 1946. In that story and others, the previously classified project, ENIAC... Read more…

By Todd R. Weiss

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

By Todd R. Weiss

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

MIT Makes a Big Breakthrough in Nonsilicon Transistors

December 10, 2020

What if Silicon Valley moved beyond silicon? In the 80’s, Seymour Cray was asking the same question, delivering at Supercomputing 1988 a talk titled “What’s All This About Gallium Arsenide?” The supercomputing legend intended to make gallium arsenide (GaA) the material of the future... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire