ESnet at 30: Evolving Toward Exascale and Raising Expectations

By Tiffany Trader

December 10, 2015

In tandem with high-performance computing, high-speed nationwide and global infrastructure networks provide the essential backbone for today’s collaborative science workflows. In the United States, the Energy Sciences Network (ESnet) is the mission network of the U.S. Department of Energy. This high-performance, unclassified network that is managed by Lawrence Berkeley National Laboratory is moving into the newly-constructed Wang Hall on the Berkeley Lab campus.

ESnet links 40 DOE sites across the country and scientists at universities and other research institutions via a 100 gigabits-per second backbone network. One of these sites, the National Energy Research Scientific Computing Center (NERSC) has made the move to the Berkeley campus from its previous 15-year home in Oakland, California. ESnet has built a 400 gigabit-per-second (Gbps) super-channel between the Berkeley and Oakland sites to support this transition over the next year. This is the first-ever 400G production link to be deployed by a national research and education network, and will also be part of a research testbed for assessing new tools and technologies that are necessary to support massive data growth as supercomputers approach the exascale era.

“We are often the first organization to adopt new networking technologies because our scientists are really pushing the envelope when it comes to data transfer and access of large data sets,” commented ESnet Director Greg Bell in an interview with HPCwire. Along with Internet2, ESnet also built the first nationwide continental scale 100 Gbps network in 2012. “If you think of ESnet as being the national labs network, you can think of Internet2 as being the university network in the US,” Bell clarified.

In his role as ESnet director, Bell oversees all of the operational activities of one of the largest and fastest networks in the world — there are network engineers on call 24-7, a cybersecurity team, storage experts, data collection and data analysis activities, and efforts engaged in building out the network. Bell also oversees teams who help make the network useful to scientists. There is a team of people who build software tools to help the network be less of a black box. Then there is another team focused just on science engagement, helping scientists make the best possible use of the network and raising expectations about the network capabilities.

“This team directly engages with scientific collaborations large and small, but mostly large to medium-sized,” noted Bell, “and it also teaches scientists and networkers around the country and around the world best practices for networking so we can all build networks that are better and make it easier to move data and make it easier to accelerate scientific outcomes.”

Over the last ten years, the ESnet team has seen a move away from the sneakernet model, in which data is moved using a storage medium that is carried on a person or sent via a postal service.

“We aren’t ideologically opposed to sneakernet,” said Bell. “If you just need to move data once and you know you never need to access it again, it can sometimes be the most efficient solution, but in general, people need to move data over and over again, and they need to combine it with other data sets and they need to share it and they need to access it later and for that, networks are just great.

“We are trying to raise everyone’s expectations and let them know that networks can do much more than they could just a few years ago. In fact, the great vision that we have for networks is not only as a scientific instrument in their own right, but that they can glue together big scientific instruments like a particle accelerator or a light source and a computational facility, for example, a DOE supercomputer center. This enables a scenario where we can take data in real-time from the source and move it at high-speed over the network and process it in real-time at the supercomputer center so the scientists can get immediate feedback about the experimental parameters that they have chosen and then adjust them in real-time.”

“Doing this requires that the network glue together two or three other instruments,” Bell added. “If we can do that, we can make the DOE science complex and the US science complex more than the sum of its parts. We can enable discovery workflows that wouldn’t have been possible without excellent high-speed networks.”

ESnet then and now

ESnet will be 30 years old in 2016, which makes it one of the oldest networks in the world. “It actually predates the creation of the commercial network,” Bell shared. The DOE network was created at at time when two DOE science activities, one in high-energy physics and one in fusion energy — each had their own network before the Internet had really settled down into one technical architecture. In 1986, it was decided to create a single unified mission network and to chose a single architecture, which was TCP/IP, which is the way that the Internet evolved.

“ESnet was created out of the merger of these two domain specific science networks and since then, fusion and most especially high-energy physics has pushed us to be at the bleeding edge of networking for those 30 years,” Bell added.

The Department of Energy’s Office of Science funds nearly half of the physical science research in the US and provides about a billion dollars a year to university campuses. ESnet provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and other research institutions, enabling them to collaborate on some of the world’s most important scientific challenges within energy, climate science, and the origins of the universe.

The fundamental challenge for ESnet is keeping up with data growth, which has increased at a fairly steady exponential rate since its inception. Since 1990, ESnet’s average traffic has grown by a factor of 10 every 47 months, roughly along a Moore’s law growth curve. Last month, the network moved 36 petabytes of traffic.

What’s interesting, though, is that there has been a change in the source of this data as Bell explained. “It used to come from very large experiments like Large Hadron Collider (LHC) ATLAS and CMS detectors,” he said. “Now, it’s still coming from those large experiments but increasingly it’s coming from a lot more sources that are smaller and cheaper, for instance the detectors at the DOE Advanced Light Source beamline. Those are conceptually like the cameras in a mobile phone and they are getting much more high-resolution and the refresh rate is getting faster and faster. That compounded effect of high-resolution and faster refresh rates means that individual detectors are capable of sending out 10 Gbps or much more and soon this will be 80-100 Gbps.”

“So it actually is a tremendous challenge to engineer the network so it can grow cost-effectively,” said Bell. “We don’t have exponential budgets, we actually have at best linear budgets and sometimes flat budgets, so the question is how can we keep up with the demand.

“The light sources are just one example,” Bell added. “Tiny inexpensive genomic sequencers are producing a lot of data, as are environmental sensors, telescopes, and cosmology experiments, so for us it adds up to this exponential growth curve that is the fundamental challenge of ESnet, which is to evolve its architecture to accommodate and stay ahead of this growth curve.”

Over the years, ESnet has continued to rise to the challenge of supporting this exponential growth. ESnet5, the moniker for the current ESnet instantiation, is the 100 Gbps transcontinental and transatlantic network that was constructed a few years ago. They are now planning for the next network, ESnet6, which will probably need to use a different technology, according to Bell. To that end, he and his staff are keeping a close eye on developments in software-defined networking to produce more efficient use of the network as well as a consolidation of networking layers.

15-CS-1035 ESnet EuropeUS Map_v2_wkey

“Typically we used separate kinds of components at the optical layer and one at the higher layers, layers 2 and 3 that do switching and routing,” said Bell. “One path of innovation that we are watching closely is trends to consolidate those layers so you would buy one device instead of two that could handle the optical networking and also the traditional IP networking on top of that. It will probably be some combination of those two major trends that will produce the architecture that we will procure for the new network, but since it is still early in the process, this is still very conceptual.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This