ESnet at 30: Evolving Toward Exascale and Raising Expectations

By Tiffany Trader

December 10, 2015

In tandem with high-performance computing, high-speed nationwide and global infrastructure networks provide the essential backbone for today’s collaborative science workflows. In the United States, the Energy Sciences Network (ESnet) is the mission network of the U.S. Department of Energy. This high-performance, unclassified network that is managed by Lawrence Berkeley National Laboratory is moving into the newly-constructed Wang Hall on the Berkeley Lab campus.

ESnet links 40 DOE sites across the country and scientists at universities and other research institutions via a 100 gigabits-per second backbone network. One of these sites, the National Energy Research Scientific Computing Center (NERSC) has made the move to the Berkeley campus from its previous 15-year home in Oakland, California. ESnet has built a 400 gigabit-per-second (Gbps) super-channel between the Berkeley and Oakland sites to support this transition over the next year. This is the first-ever 400G production link to be deployed by a national research and education network, and will also be part of a research testbed for assessing new tools and technologies that are necessary to support massive data growth as supercomputers approach the exascale era.

“We are often the first organization to adopt new networking technologies because our scientists are really pushing the envelope when it comes to data transfer and access of large data sets,” commented ESnet Director Greg Bell in an interview with HPCwire. Along with Internet2, ESnet also built the first nationwide continental scale 100 Gbps network in 2012. “If you think of ESnet as being the national labs network, you can think of Internet2 as being the university network in the US,” Bell clarified.

In his role as ESnet director, Bell oversees all of the operational activities of one of the largest and fastest networks in the world — there are network engineers on call 24-7, a cybersecurity team, storage experts, data collection and data analysis activities, and efforts engaged in building out the network. Bell also oversees teams who help make the network useful to scientists. There is a team of people who build software tools to help the network be less of a black box. Then there is another team focused just on science engagement, helping scientists make the best possible use of the network and raising expectations about the network capabilities.

“This team directly engages with scientific collaborations large and small, but mostly large to medium-sized,” noted Bell, “and it also teaches scientists and networkers around the country and around the world best practices for networking so we can all build networks that are better and make it easier to move data and make it easier to accelerate scientific outcomes.”

Over the last ten years, the ESnet team has seen a move away from the sneakernet model, in which data is moved using a storage medium that is carried on a person or sent via a postal service.

“We aren’t ideologically opposed to sneakernet,” said Bell. “If you just need to move data once and you know you never need to access it again, it can sometimes be the most efficient solution, but in general, people need to move data over and over again, and they need to combine it with other data sets and they need to share it and they need to access it later and for that, networks are just great.

“We are trying to raise everyone’s expectations and let them know that networks can do much more than they could just a few years ago. In fact, the great vision that we have for networks is not only as a scientific instrument in their own right, but that they can glue together big scientific instruments like a particle accelerator or a light source and a computational facility, for example, a DOE supercomputer center. This enables a scenario where we can take data in real-time from the source and move it at high-speed over the network and process it in real-time at the supercomputer center so the scientists can get immediate feedback about the experimental parameters that they have chosen and then adjust them in real-time.”

“Doing this requires that the network glue together two or three other instruments,” Bell added. “If we can do that, we can make the DOE science complex and the US science complex more than the sum of its parts. We can enable discovery workflows that wouldn’t have been possible without excellent high-speed networks.”

ESnet then and now

ESnet will be 30 years old in 2016, which makes it one of the oldest networks in the world. “It actually predates the creation of the commercial network,” Bell shared. The DOE network was created at at time when two DOE science activities, one in high-energy physics and one in fusion energy — each had their own network before the Internet had really settled down into one technical architecture. In 1986, it was decided to create a single unified mission network and to chose a single architecture, which was TCP/IP, which is the way that the Internet evolved.

“ESnet was created out of the merger of these two domain specific science networks and since then, fusion and most especially high-energy physics has pushed us to be at the bleeding edge of networking for those 30 years,” Bell added.

The Department of Energy’s Office of Science funds nearly half of the physical science research in the US and provides about a billion dollars a year to university campuses. ESnet provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and other research institutions, enabling them to collaborate on some of the world’s most important scientific challenges within energy, climate science, and the origins of the universe.

The fundamental challenge for ESnet is keeping up with data growth, which has increased at a fairly steady exponential rate since its inception. Since 1990, ESnet’s average traffic has grown by a factor of 10 every 47 months, roughly along a Moore’s law growth curve. Last month, the network moved 36 petabytes of traffic.

What’s interesting, though, is that there has been a change in the source of this data as Bell explained. “It used to come from very large experiments like Large Hadron Collider (LHC) ATLAS and CMS detectors,” he said. “Now, it’s still coming from those large experiments but increasingly it’s coming from a lot more sources that are smaller and cheaper, for instance the detectors at the DOE Advanced Light Source beamline. Those are conceptually like the cameras in a mobile phone and they are getting much more high-resolution and the refresh rate is getting faster and faster. That compounded effect of high-resolution and faster refresh rates means that individual detectors are capable of sending out 10 Gbps or much more and soon this will be 80-100 Gbps.”

“So it actually is a tremendous challenge to engineer the network so it can grow cost-effectively,” said Bell. “We don’t have exponential budgets, we actually have at best linear budgets and sometimes flat budgets, so the question is how can we keep up with the demand.

“The light sources are just one example,” Bell added. “Tiny inexpensive genomic sequencers are producing a lot of data, as are environmental sensors, telescopes, and cosmology experiments, so for us it adds up to this exponential growth curve that is the fundamental challenge of ESnet, which is to evolve its architecture to accommodate and stay ahead of this growth curve.”

Over the years, ESnet has continued to rise to the challenge of supporting this exponential growth. ESnet5, the moniker for the current ESnet instantiation, is the 100 Gbps transcontinental and transatlantic network that was constructed a few years ago. They are now planning for the next network, ESnet6, which will probably need to use a different technology, according to Bell. To that end, he and his staff are keeping a close eye on developments in software-defined networking to produce more efficient use of the network as well as a consolidation of networking layers.

15-CS-1035 ESnet EuropeUS Map_v2_wkey

“Typically we used separate kinds of components at the optical layer and one at the higher layers, layers 2 and 3 that do switching and routing,” said Bell. “One path of innovation that we are watching closely is trends to consolidate those layers so you would buy one device instead of two that could handle the optical networking and also the traditional IP networking on top of that. It will probably be some combination of those two major trends that will produce the architecture that we will procure for the new network, but since it is still early in the process, this is still very conceptual.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major shakeups -- China still has the top two spots locked with th Read more…

By Tiffany Trader

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This