ESnet at 30: Evolving Toward Exascale and Raising Expectations

By Tiffany Trader

December 10, 2015

In tandem with high-performance computing, high-speed nationwide and global infrastructure networks provide the essential backbone for today’s collaborative science workflows. In the United States, the Energy Sciences Network (ESnet) is the mission network of the U.S. Department of Energy. This high-performance, unclassified network that is managed by Lawrence Berkeley National Laboratory is moving into the newly-constructed Wang Hall on the Berkeley Lab campus.

ESnet links 40 DOE sites across the country and scientists at universities and other research institutions via a 100 gigabits-per second backbone network. One of these sites, the National Energy Research Scientific Computing Center (NERSC) has made the move to the Berkeley campus from its previous 15-year home in Oakland, California. ESnet has built a 400 gigabit-per-second (Gbps) super-channel between the Berkeley and Oakland sites to support this transition over the next year. This is the first-ever 400G production link to be deployed by a national research and education network, and will also be part of a research testbed for assessing new tools and technologies that are necessary to support massive data growth as supercomputers approach the exascale era.

“We are often the first organization to adopt new networking technologies because our scientists are really pushing the envelope when it comes to data transfer and access of large data sets,” commented ESnet Director Greg Bell in an interview with HPCwire. Along with Internet2, ESnet also built the first nationwide continental scale 100 Gbps network in 2012. “If you think of ESnet as being the national labs network, you can think of Internet2 as being the university network in the US,” Bell clarified.

In his role as ESnet director, Bell oversees all of the operational activities of one of the largest and fastest networks in the world — there are network engineers on call 24-7, a cybersecurity team, storage experts, data collection and data analysis activities, and efforts engaged in building out the network. Bell also oversees teams who help make the network useful to scientists. There is a team of people who build software tools to help the network be less of a black box. Then there is another team focused just on science engagement, helping scientists make the best possible use of the network and raising expectations about the network capabilities.

“This team directly engages with scientific collaborations large and small, but mostly large to medium-sized,” noted Bell, “and it also teaches scientists and networkers around the country and around the world best practices for networking so we can all build networks that are better and make it easier to move data and make it easier to accelerate scientific outcomes.”

Over the last ten years, the ESnet team has seen a move away from the sneakernet model, in which data is moved using a storage medium that is carried on a person or sent via a postal service.

“We aren’t ideologically opposed to sneakernet,” said Bell. “If you just need to move data once and you know you never need to access it again, it can sometimes be the most efficient solution, but in general, people need to move data over and over again, and they need to combine it with other data sets and they need to share it and they need to access it later and for that, networks are just great.

“We are trying to raise everyone’s expectations and let them know that networks can do much more than they could just a few years ago. In fact, the great vision that we have for networks is not only as a scientific instrument in their own right, but that they can glue together big scientific instruments like a particle accelerator or a light source and a computational facility, for example, a DOE supercomputer center. This enables a scenario where we can take data in real-time from the source and move it at high-speed over the network and process it in real-time at the supercomputer center so the scientists can get immediate feedback about the experimental parameters that they have chosen and then adjust them in real-time.”

“Doing this requires that the network glue together two or three other instruments,” Bell added. “If we can do that, we can make the DOE science complex and the US science complex more than the sum of its parts. We can enable discovery workflows that wouldn’t have been possible without excellent high-speed networks.”

ESnet then and now

ESnet will be 30 years old in 2016, which makes it one of the oldest networks in the world. “It actually predates the creation of the commercial network,” Bell shared. The DOE network was created at at time when two DOE science activities, one in high-energy physics and one in fusion energy — each had their own network before the Internet had really settled down into one technical architecture. In 1986, it was decided to create a single unified mission network and to chose a single architecture, which was TCP/IP, which is the way that the Internet evolved.

“ESnet was created out of the merger of these two domain specific science networks and since then, fusion and most especially high-energy physics has pushed us to be at the bleeding edge of networking for those 30 years,” Bell added.

The Department of Energy’s Office of Science funds nearly half of the physical science research in the US and provides about a billion dollars a year to university campuses. ESnet provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and other research institutions, enabling them to collaborate on some of the world’s most important scientific challenges within energy, climate science, and the origins of the universe.

The fundamental challenge for ESnet is keeping up with data growth, which has increased at a fairly steady exponential rate since its inception. Since 1990, ESnet’s average traffic has grown by a factor of 10 every 47 months, roughly along a Moore’s law growth curve. Last month, the network moved 36 petabytes of traffic.

What’s interesting, though, is that there has been a change in the source of this data as Bell explained. “It used to come from very large experiments like Large Hadron Collider (LHC) ATLAS and CMS detectors,” he said. “Now, it’s still coming from those large experiments but increasingly it’s coming from a lot more sources that are smaller and cheaper, for instance the detectors at the DOE Advanced Light Source beamline. Those are conceptually like the cameras in a mobile phone and they are getting much more high-resolution and the refresh rate is getting faster and faster. That compounded effect of high-resolution and faster refresh rates means that individual detectors are capable of sending out 10 Gbps or much more and soon this will be 80-100 Gbps.”

“So it actually is a tremendous challenge to engineer the network so it can grow cost-effectively,” said Bell. “We don’t have exponential budgets, we actually have at best linear budgets and sometimes flat budgets, so the question is how can we keep up with the demand.

“The light sources are just one example,” Bell added. “Tiny inexpensive genomic sequencers are producing a lot of data, as are environmental sensors, telescopes, and cosmology experiments, so for us it adds up to this exponential growth curve that is the fundamental challenge of ESnet, which is to evolve its architecture to accommodate and stay ahead of this growth curve.”

Over the years, ESnet has continued to rise to the challenge of supporting this exponential growth. ESnet5, the moniker for the current ESnet instantiation, is the 100 Gbps transcontinental and transatlantic network that was constructed a few years ago. They are now planning for the next network, ESnet6, which will probably need to use a different technology, according to Bell. To that end, he and his staff are keeping a close eye on developments in software-defined networking to produce more efficient use of the network as well as a consolidation of networking layers.

15-CS-1035 ESnet EuropeUS Map_v2_wkey

“Typically we used separate kinds of components at the optical layer and one at the higher layers, layers 2 and 3 that do switching and routing,” said Bell. “One path of innovation that we are watching closely is trends to consolidate those layers so you would buy one device instead of two that could handle the optical networking and also the traditional IP networking on top of that. It will probably be some combination of those two major trends that will produce the architecture that we will procure for the new network, but since it is still early in the process, this is still very conceptual.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This