ESnet at 30: Evolving Toward Exascale and Raising Expectations

By Tiffany Trader

December 10, 2015

In tandem with high-performance computing, high-speed nationwide and global infrastructure networks provide the essential backbone for today’s collaborative science workflows. In the United States, the Energy Sciences Network (ESnet) is the mission network of the U.S. Department of Energy. This high-performance, unclassified network that is managed by Lawrence Berkeley National Laboratory is moving into the newly-constructed Wang Hall on the Berkeley Lab campus.

ESnet links 40 DOE sites across the country and scientists at universities and other research institutions via a 100 gigabits-per second backbone network. One of these sites, the National Energy Research Scientific Computing Center (NERSC) has made the move to the Berkeley campus from its previous 15-year home in Oakland, California. ESnet has built a 400 gigabit-per-second (Gbps) super-channel between the Berkeley and Oakland sites to support this transition over the next year. This is the first-ever 400G production link to be deployed by a national research and education network, and will also be part of a research testbed for assessing new tools and technologies that are necessary to support massive data growth as supercomputers approach the exascale era.

“We are often the first organization to adopt new networking technologies because our scientists are really pushing the envelope when it comes to data transfer and access of large data sets,” commented ESnet Director Greg Bell in an interview with HPCwire. Along with Internet2, ESnet also built the first nationwide continental scale 100 Gbps network in 2012. “If you think of ESnet as being the national labs network, you can think of Internet2 as being the university network in the US,” Bell clarified.

In his role as ESnet director, Bell oversees all of the operational activities of one of the largest and fastest networks in the world — there are network engineers on call 24-7, a cybersecurity team, storage experts, data collection and data analysis activities, and efforts engaged in building out the network. Bell also oversees teams who help make the network useful to scientists. There is a team of people who build software tools to help the network be less of a black box. Then there is another team focused just on science engagement, helping scientists make the best possible use of the network and raising expectations about the network capabilities.

“This team directly engages with scientific collaborations large and small, but mostly large to medium-sized,” noted Bell, “and it also teaches scientists and networkers around the country and around the world best practices for networking so we can all build networks that are better and make it easier to move data and make it easier to accelerate scientific outcomes.”

Over the last ten years, the ESnet team has seen a move away from the sneakernet model, in which data is moved using a storage medium that is carried on a person or sent via a postal service.

“We aren’t ideologically opposed to sneakernet,” said Bell. “If you just need to move data once and you know you never need to access it again, it can sometimes be the most efficient solution, but in general, people need to move data over and over again, and they need to combine it with other data sets and they need to share it and they need to access it later and for that, networks are just great.

“We are trying to raise everyone’s expectations and let them know that networks can do much more than they could just a few years ago. In fact, the great vision that we have for networks is not only as a scientific instrument in their own right, but that they can glue together big scientific instruments like a particle accelerator or a light source and a computational facility, for example, a DOE supercomputer center. This enables a scenario where we can take data in real-time from the source and move it at high-speed over the network and process it in real-time at the supercomputer center so the scientists can get immediate feedback about the experimental parameters that they have chosen and then adjust them in real-time.”

“Doing this requires that the network glue together two or three other instruments,” Bell added. “If we can do that, we can make the DOE science complex and the US science complex more than the sum of its parts. We can enable discovery workflows that wouldn’t have been possible without excellent high-speed networks.”

ESnet then and now

ESnet will be 30 years old in 2016, which makes it one of the oldest networks in the world. “It actually predates the creation of the commercial network,” Bell shared. The DOE network was created at at time when two DOE science activities, one in high-energy physics and one in fusion energy — each had their own network before the Internet had really settled down into one technical architecture. In 1986, it was decided to create a single unified mission network and to chose a single architecture, which was TCP/IP, which is the way that the Internet evolved.

“ESnet was created out of the merger of these two domain specific science networks and since then, fusion and most especially high-energy physics has pushed us to be at the bleeding edge of networking for those 30 years,” Bell added.

The Department of Energy’s Office of Science funds nearly half of the physical science research in the US and provides about a billion dollars a year to university campuses. ESnet provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and other research institutions, enabling them to collaborate on some of the world’s most important scientific challenges within energy, climate science, and the origins of the universe.

The fundamental challenge for ESnet is keeping up with data growth, which has increased at a fairly steady exponential rate since its inception. Since 1990, ESnet’s average traffic has grown by a factor of 10 every 47 months, roughly along a Moore’s law growth curve. Last month, the network moved 36 petabytes of traffic.

What’s interesting, though, is that there has been a change in the source of this data as Bell explained. “It used to come from very large experiments like Large Hadron Collider (LHC) ATLAS and CMS detectors,” he said. “Now, it’s still coming from those large experiments but increasingly it’s coming from a lot more sources that are smaller and cheaper, for instance the detectors at the DOE Advanced Light Source beamline. Those are conceptually like the cameras in a mobile phone and they are getting much more high-resolution and the refresh rate is getting faster and faster. That compounded effect of high-resolution and faster refresh rates means that individual detectors are capable of sending out 10 Gbps or much more and soon this will be 80-100 Gbps.”

“So it actually is a tremendous challenge to engineer the network so it can grow cost-effectively,” said Bell. “We don’t have exponential budgets, we actually have at best linear budgets and sometimes flat budgets, so the question is how can we keep up with the demand.

“The light sources are just one example,” Bell added. “Tiny inexpensive genomic sequencers are producing a lot of data, as are environmental sensors, telescopes, and cosmology experiments, so for us it adds up to this exponential growth curve that is the fundamental challenge of ESnet, which is to evolve its architecture to accommodate and stay ahead of this growth curve.”

Over the years, ESnet has continued to rise to the challenge of supporting this exponential growth. ESnet5, the moniker for the current ESnet instantiation, is the 100 Gbps transcontinental and transatlantic network that was constructed a few years ago. They are now planning for the next network, ESnet6, which will probably need to use a different technology, according to Bell. To that end, he and his staff are keeping a close eye on developments in software-defined networking to produce more efficient use of the network as well as a consolidation of networking layers.

15-CS-1035 ESnet EuropeUS Map_v2_wkey

“Typically we used separate kinds of components at the optical layer and one at the higher layers, layers 2 and 3 that do switching and routing,” said Bell. “One path of innovation that we are watching closely is trends to consolidate those layers so you would buy one device instead of two that could handle the optical networking and also the traditional IP networking on top of that. It will probably be some combination of those two major trends that will produce the architecture that we will procure for the new network, but since it is still early in the process, this is still very conceptual.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This