Towards Ubiquitous HPC — Passing HPC into the hands of every engineer and scientist

By Wolfgang Gentzsch, UberCloud

January 7, 2016

Countless case studies demonstrate impressively the importance of HPC for engineering and scientific insight, product innovation, and market competitiveness. But so far HPC was mostly in the hands of a relatively small elite crowd, not easily accessible by the large majority.  In this article, however, we argue that – despite the ever increasing complexity of HPC hardware and system components –engineers and scientists have never been this close to HPC, i.e. ubiquitous HPC, as a common tool, for everyone. The main reason for this advance can be seen in the continuous progress of HPC software tools which assist enormously in the design, development, and optimization of engineering and scientific applications. Now, we believe that the next chasm towards ubiquitous HPC will be crossed very soon by new software container technology which will dramatically facilitate software packageability and portability, ease the access and use, and simplify software maintenance and support, and which finally will pass HPC into the hands of every engineer and scientist.

First, a Little Container History

The Box Levinson“In April 1956, a refitted oil tanker carried fifty-eight shipping containers from Newark to Houston. From that modest beginning, container shipping developed into a huge industry that made the boom in global trade possible. “The Box” tells the dramatic story of the container’s creation, the decade of struggle before it was widely adopted, and the sweeping economic consequences of the sharp fall in transportation costs that containerization brought about. … Economist Marc Levinson shows how the container transformed economic geography. … By making shipping so cheap that industry could locate factories far from its customers, the container paved the way for Asia to become the world’s workshop and brought consumers a previously unimaginable variety of low-cost products from around the globe.”

Whenever I read this story from Marc Levinson’s book “The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger” my blood runs cold, because of its analogy to today’s emerging software containers and their growing importance for all IT, for the whole software life cycle, each phase, from design, coding, testing, to software release, distribution, access and use, support and maintenance, and especially for the end-users and their applications.

40 Years of Expert HPC

The last 40 years saw a continuous struggle of our community with HPC. Let me tell you how I started with HPC. In 1976 started my first job as a computer scientist at the Max Planck Institute for Plasmaphysics in Munich, developing my first program for magneto-hydrodynamics plasma simulations on a 3-MFLOPS IBM 360/91. Three years later, at the German Aerospace Center (DLR) in Gottingen, I was involved in the benchmarking and acquisition of DLR’s first Cray-1S which marked my entry into vector computing. In 1980, my team broke the 50-MFLOPS with a speedup of 20 over DLR’s IBM 3081 mainframe computer, with fluid dynamics simulations for a nonlinear convective flow and for a direct Monte-Carlo simulation of the von-Karman vortex street. To get to that level of performance, however, we had to change several numerical algorithms and hand-vectorize and optimize quite a few compute-intensive subroutines of the programs which took us several troublesome months. That was HPC for experts, then.

Ubiquitous Computing – Xerox PARC’s Great Mark Weiser

When we use the word ‘ubiquitous’ in the following we mean synonyms like everywhere, omnipresent, pervasive, universal, and all-over, according to thesaurus.com. Here I’d like to quote the great Mark Weiser from Xerox PARC who wrote in 1988 already:

Mark Weiser

“Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives.”

Weiser clearly looks at ‘ubiquitous computing’ with the eyes of the end-users, engineers and scientists I mentioned above. According to Weiser these users shouldn’t care about the ‘engine’ under the hood; all they care is about ‘driving’ safely, reliably, easily; getting in the car, starting the engine, pulling out into traffic, and reaching point B; everybody should be able to do that, everywhere, any time.

Towards Ubiquitous High Performance Computing

Now translating this into ‘Ubiquitous HPC’, with Mark Weiser. Very simplified HPC technology is split into two parts: hardware and software; both today are immensely complex in themselves; and their mutual interaction is highly sophisticated. For (high performance) computing to be ubiquitous Weiser suggests making it disappear into the background of our (business) lives; note well, this is from the end user’s point of view. Indeed, in the last decade, we were able to make a big step towards reaching this goal: we abstracted the application layer from the physical architecture underneath, through server virtualization. This achievement came with great benefits for the IT folks – and for the end-users too: such as the ability to provision servers faster, enhance security, reduce hardware vendor lock-in, increase uptime, improve disaster recovery, isolate applications and extend the life of older applications, and help move things to the cloud easily. So, with server virtualization we came quite close already to ubiquitous computing.

Finally – Ubiquitous High Performance Computing – with HPC Software Containers

But, server virtualization did not really gain a foothold in HPC, especially for highly parallel applications requiring low latency and high bandwidth inter-process communication. And multi-tenant HPC servers with several VMs competing among each other for hardware resources such as I/O, memory, and network, are often slowing down application performance.

Because VMs failed to show presence in HPC, the challenges of software distribution, administration, and maintenance kept HPC systems locked up in closets, available to only a select few. There has been no way to control the application management chaos that a democratized HPC environment would result in.

. . . until in 2013 Docker Linux Containers saw the light of day. The key practical difference between Docker and VMs is that Docker is a Linux-based system that makes use of a userspace interface for the Linux kernel containment features. Another difference is that rather than being a self-contained system in its own right, a Docker container shares the Linux kernel with the operating system running the host machine. It also shares the kernel with other containers that are running on the host machine. That makes Docker containers extremely lightweight, and well suited for HPC, in principle. Still it took us at UberCloud about a year to develop – based on micro-service Docker container technology – the macro-service production-ready counterpart for HPC, plus enhancing and testing it with a dozen of applications and with engineering workflows, on about a dozen different HPC single- and multi-node cloud resources. These high performance interactive software containers, whether they be on-premise, on public or on private clouds, bring a number of core benefits to the otherwise traditional HPC environments with the goal to make HPC widely available, ubiquitous:

Packageability: Bundle applications together with libraries and configuration files:

A container image bundles the needed libraries and tools as well as the application code and the necessary configuration for these components to work together seamlessly. There is no need to install software or tools on the host compute environment, since the ready-to-run container image has all the required components. The challenges regarding library dependencies, version conflicts, configuration challenges disappear, as do the huge replication and duplication efforts in our community when it comes to deploying HPC software which is one of the major goals of the OpenHPC initiative.

Portability: Build container images once, deploy them rapidly in various infrastructures:

Having a single container image makes it easy for the workload to be rapidly deployed and moved from host to host, between development and production environments, and to other computing facilities easily. The container allows the end user to select the appropriate environment such as a public cloud, a private cloud, or an on-premise HPC cluster. There is no need to install new components or perform setup steps when using another host.

Accessibility: Bundle tools such as SSH into the container for easy access:

The container is setup to provide easy access via tools such as VNC for remote desktop sharing. In addition, containers running on computing nodes enable both end-users and administrators to have a consistent implementation regardless of the underlying compute environment.

Usability: Provide familiar user interfaces and user tools with the application:

The container has only the required components to run the application. By eliminating other tools and middleware, the work environment is simplified and the usability is improved. The ability to provide a full featured desktop increases usability (especially for pre and post processing steps) and reduces training needs. Further, the HPC containers can be used together with a resource manager such as Slurm or Grid Engine, increasing the usability even further by eliminating many administration tasks.

In addition, the lightweight nature of the HPC container suggests low performance overhead. Our own performance tests with real applications on several multi-host multi-container HPC systems demonstrate that there is no significant overhead for running high performance workloads as an HPC container.

Conclusion

During the past two years we at UberCloud have successfully built HPC containers for application software like ANSYS (Fluent, CFX, Icepak, Electromagnetics, Mechanical, LS-Dyna, DesignModeler, and Workbench), CD-adapco STAR-CCM+, COMSOL Multiphysics, NICE DCV, Numeca FINE/Marine and FINE/Turbo, OpenFOAM, PSPP, Red Cedar’s HEEDS, Scilab, Gromacs, and others. These application containers are now running on cloud resources from Advania, Amazon AWS, CPU 24/7, Microsoft Azure, Nephoscale, OzenCloud, and others.

Together with recent advances and trends in application software and in high performance hardware technologies, the advent of lightweight pervasive, packageable, portable, scalable, interactive, easy to access and use HPC application containers based on Docker technology running seamlessly on workstations, servers, and clouds, is bringing us ever closer to what Intel calls the democratization of HPC, i.e. the age of ubiquitous high performance computing where HPC “technology recedes into the background of our lives.”

More information about these software containers can be found here. Container cases studies with real applications in the cloud are available for download. And, quite useful for all software providers is the site “Building Your Own ‘Software as a Service’ Business in the Cloud.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Army Seeks AI Ground Truth

April 3, 2020

Deep neural networks are being mustered by U.S. military researchers to marshal new technology forces on the Internet of Battlefield Things. U.S. Army and industry researchers said this week they have developed a “c Read more…

By George Leopold

Piz Daint Tackles Marsquakes

April 3, 2020

Even as researchers use supercomputers to probe the mysteries of earthquakes here on Earth, others are setting their sights on quakes just a little farther away. Researchers at ETH Zürich in Switzerland have applied sup Read more…

By Oliver Peckham

HPC Career Notes: April 2020 Edition

April 2, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This